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Abstract
Background This study evaluates the impact of corneal power on the accuracy of 14 newer intraocular lens (IOL) 
calculation formulas in cataract surgery. The aim is to assess how these formulas perform across different corneal 
curvature ranges, thereby guiding more precise IOL selection.

Methods In this retrospective case series, 336 eyes from 336 patients who underwent cataract surgery were studied. 
The cohort was divided into three groups according to preoperative corneal power. Key metrics analyzed included 
mean prediction error (PE), standard deviation of PE (SD), mean absolute prediction error (MAE), median absolute 
error (MedAE), and the percentage of eyes with PE within ± 0.25 D, 0.50 D, ± 0.75 D, ± 1.00 D and ± 2.00 D.

Results In the flat K group (Km < 43 D), VRF-G, Emmetropia Verifying Optical Version 2.0 (EVO2.0), Kane, and Hoffer 
QST demonstrated lower SDs (± 0.373D, ± 0.379D, ± 0.380D, ± 0.418D, respectively) compared to the VRF formula (all 
P < 0.05). EVO2.0 and K6 showed significantly different SDs compared to Barrett Universal II (BUII) (all P < 0.02). In the 
medium K group (43 D ≤ Km < 46 D), VRF-G, BUII, Karmona, K6, EVO2.0, Kane, and Pearl-DGS recorded lower MAEs 
(0.307D to 0.320D) than Olsen (OLCR) and Castrop (all P < 0.03), with RBF3.0 having the second lowest MAE (0.309D), 
significantly lower than VRF and Olsen (OLCR) (all P < 0.05). In the steep K group (Km ≥ 46D), RBF3.0, K6, and Kane 
achieved significantly lower MAEs (0.279D, 0.290D, 0.291D, respectively) than Castrop (all P < 0.001).

Conclusions The study highlights the varying accuracy of newer IOL formulas based on corneal power. VRF-G, 
EVO2.0, Kane, K6, and Hoffer QST are highly accurate for flat corneas, while VRF-G, RBF3.0, BUII, Karmona, K6, EVO2.0, 
Kane, and Pearl-DGS are recommended for medium K corneas. In steep corneas, RBF3.0, K6, and Kane show superior 
performance.
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Introduction
In cataract surgery, achieving precise refractive outcomes 
is crucial and largely depends on accurate ocular biomet-
ric measurements. One of the key factors in this process 
is the selection of appropriate intraocular lens (IOL) 
power calculation formulas. Despite advancements in 
technology and methodology, prediction errors (PE) con-
tinue to pose challenges, particularly in cases with unique 
ocular characteristics like axial length (AL), anterior 
chamber depth (ACD, measured from corneal epithelium 
to lens), corneal power, and lens thickness (LT) [1]. 

The development of newer IOL power calculation for-
mulas such as the Barrett Universal II(hereafter BUII) 
[2], Castrop [3], Emmetropia Verifying Optical Ver-
sion 2.0(EVO2.0), Hoffer QST [4], Kane [5], Karmona 
[6], Cook K6(K6), Naeser2 [7], Olsen C [8, 9], Pearl DGS 
[10], Radial Basis Function Version 3.0 (RBF3.0), T2 [11], 
VRF [12] and VRF-G [13] marks significant progress in 
this field [13–16]. These formulas have shown enhanced 
accuracy, especially in eyes with atypical AL, [17–19]
ACD, [19] and other specific ocular parameters [20]. 

While AL and ACD are often highlighted in IOL power 
calculation, the role of corneal power in influencing the 
accuracy of these formulas is equally critical. Studies with 
comprehensive datasets have highlighted that variations 
in corneal power can significantly affect the precision 
of IOL power calculation formulas [21–25]. Traditional 
comparisons primarily focused on the performance of 
third- and fourth-generation formulas in eyes with atypi-
cal corneal power, revealing limitations in formulas like 
Haigis [26], Hoffer Q [27], and SRK/T [28] in cases of 
steep corneal power [22, 24, 25]. However, evaluations of 
the newer-generation formulas, such as RBF and Olsen 
C, suggest substantial improvements in accuracy [21, 22]. 

This study aims to examine the influence of corneal 
power on the prediction accuracy of a range of IOL cal-
culation formulas. By comparing newer IOL power cal-
culation formulas (BUII, Castrop, EVO2.0, Hoffer QST, 
Kane, Karmona, K6, Naeser2, Olsen (OLCR), Pearl-DGS, 
RBF3.0, T2, VRF, and VRF-G), we intend to provide 
insights for selecting the most suitable IOL formula based 
on individual corneal characteristics. This approach will 
enhance our understanding of the relationship between 
corneal power and IOL formula accuracy, aiding in more 
precise postoperative refractive outcomes.

Materials and methods
Patients and measurements
This retrospective case series study was conducted from 
January 2019 to December 2021 at the Eye Hospital of 
Wenzhou Medical University. The patient cohort con-
sisted of individuals who underwent uncomplicated cata-
ract surgery via phacoemulsification. The surgeries were 
performed by two experienced cataract surgeons, LJ and 

HF, with each patient receiving the same intraocular lens 
(IOL) model (SN6CWS, Alcon, Fort Worth, TX, USA). 
Selection criteria for study participants were aligned with 
the IOL power calculation guidelines proposed by Hof-
fer et al. in 2020 [29]. In cases where patients underwent 
sequential bilateral cataract surgery, the right eye was 
preferentially included in the study. Inclusion criteria 
were a postoperative corrected distance visual acuity of 
at least 20/40. Exclusion criteria encompassed patients 
with a history of eye disease, prior ocular surgery, invalid 
biometry, intraoperative or postoperative complications, 
or lack of postoperative manifest refraction data.

Preoperative ocular parameters were measured using 
the Lenstar LS900 (Haag-Streit AG, Koeniz, Switzer-
land Biometry: v2.5.2, IOL: v4.2.1), covering axial length 
(AL), anterior chamber depth (ACD), flat and steep ker-
atometry readings (K1 and K2), central corneal thick-
ness (CCT), horizontal corneal diameter (CD), and lens 
thickness (LT). The average of the keratometry reading 
(Km) was calculated from the flat and steep keratometry 
readings. Postoperative manifest refraction with a con-
stant distance of 6 m from the phoropter to the optotype 
screen was assessed between one and three months after 
surgery to ensure stabilization of refractive outcomes.

IOL power calculation
The study utilized a range of formulas for spherical equiv-
alent prediction, including BUII, Castrop, EVO2.0, Hof-
fer QST, Kane, Karmona, K6, Naeser2, Olsen (OLCR), 
Pearl-DGS, RBF3.0, T2, VRF, and VRF-G. Several of 
these formulas (Hoffer QST, Kane, RBF3.0, VRF-G) also 
incorporated gender in their calculations [30]. 

Refractive prediction error (PE) was determined by 
comparing the spherical equivalent of the postoperative 
manifest refraction with each formula’s predicted spheri-
cal equivalent using the IOL power actually implanted. 
The standard deviation (SD) of PE’s error was calculated, 
with positive and negative PE values indicating hyperopic 
and myopic shifts, respectively. The mean refractive pre-
diction error (ME), mean absolute error (MAE), median 
absolute error (MedAE), and the percentages of eyes with 
PE within ± 0.25 D, ± 0.5 D, ± 0.75 D, ± 1.00 D and ± 2.00 
D were also computed.All formulas were individually 
optimized by their respective authors to achieve a mean 
PE of zero.

Statistical analysis
The data were analyzed with the SPSS software (version 
25.0, IBM Corp.) and R Project for Statistical Computing 
(https://www.r-project.org). The Kolmogorov-Smirnov 
test assessed data normality. The PE of Castrop, Kar-
mona, and Olsen (OLCR) showed normal distribution, 
while nonparametric Wilcoxon tests were applied to the 
PE of all formulas. Heteroscedastic method [31]was used 

https://www.r-project.org
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to evaluate SD, MAE, MedAE, and the proportion of 
eyes within different diopter ranges. The Holm-Bonfer-
roni correction was applied for multiple comparisons to 
determine adjusted P-values. A P-value of less than 0.05 
was considered statistically significant.

Results
This study included 336 eyes from 336 patients, with 
an average participant age of 70.29 years (range 33–87 
years), predominantly women (66.1%, n = 222) and 
right eyes (64.3%, n = 216). Pre-surgical biometric ocu-
lar parameters are detailed in Table  1. Based on mean 
keratometry (Km), patients were categorized into three 
groups: flat K (Km < 43 D), medium K (43 D ≤ Km < 46 D), 
and steep K (Km ≥ 46 D). Both the flat and steep K groups 
represented around 20% of the cohort each.

Formula accuracy in all patients
Table  2 summarizes the outcomes for 14 IOL formu-
las. It details the optimized constants, PE, SD, MAE, 
MedAE, and the percentage of eyes within specific PE 
ranges. The ME for all formulas was not significantly 
different from zero (P > 0.05), indicating overall accu-
rate predictions. Formulas with the highest accuracy 
included K6 (SD ± 0.399D), EVO2.0 (SD ± 0.403D), 
VRF-G (SD ± 0.403D), Kane (SD ± 0.404D), and RBF3.0 
(SD ± 0.404D). The Olsen (OLCR) formula showed 
the largest SD (± 0.459D), yet no statistical difference 
was observed in the SDs across all formulas (P > 0.05). 
EVO2.0, Pearl-DGS, RBF3.0, and BUII outperformed 
in achieving a PE within ± 0.25D, with over 53% of eyes 
falling in this category. In contrast, Olsen (OLCR), Cas-
trop, VRF, and T2 had less than 50% of eyes reaching a PE 
within ± 0.25D.

Formula accuracy according to corneal power
Table  3; Figs.  1 and 2 present the performance of each 
IOL formula across different corneal power subgroups.

Table 1 Preoperative patient biometric ocular parameters
Parameter Mean ± SD/ Me-

dian (IQR)
Range

Axial length, mm* 23.33 (0.7) 21.21–
31.98

Anterior chamber depth, mm 3.01 ± 0.44 1.69–4.28
Flat keratometry (K1), D 44.14 ± 1.71 39.77–

49.36
Steep keratometry (K2), D 44.85 ± 1.71 40.65–

50.76
Mean of keratometry (Km), D 44.49 ± 1.68 40.21–

50.06
Corneal central thickness, µm 535.09 ± 34.13 439–649
Horizontal corneal diameter, mm 11.54 ± 0.46 9.89–

13.07
Lens thickness, mm 4.47 ± 0.49 2.77–5.88
Axial length distribution, n (%)
AL<22.0 mm 29 8.63%
22.0 mm ≤ AL<26.0 mm 289 86.01%
AL ≥ 26.0 mm 18 5.36%
Keratometry subgroups, n (%)
Km<43.0D (Flat) 65 19.35%
43.0D ≤ Km<46.0D (Medium) 205 61.01%
Km ≥ 46.0D (Steep) 66 19.64%
ACD, as measured from the corneal epithelium to the lens

*Data with a non-normal distribution was shown as the median and interquartile 
range (IQR)

SD, standard deviation; D, diopter; IOL, intraocular lens

Table 2 Refractive outcomes and optimized constants obtained by each formula in all eyes
Formula Optimized Constants PE SD MAE MedAE Eyes within PE (%)

PE ≤ 0.25 D PE ≤ 0.50 D PE ≤ 0.75 D PE ≤ 1.00 D PE ≤ 2.00 D
Barrett Universal 
II

1.940 0.000 0.425 0.319 0.237 53.27 78.87 91.37 97.92 100.00

Castrop 0.420
0.150

0.003 0.442 0.348 0.281 45.24 75.30 89.58 97.02 100.00

EVO 2.0 119.068 0.000 0.403 0.306 0.236 54.17 78.87 94.64 98.21 100.00
Hoffer QST 5.620 0.000 0.416 0.318 0.255 50.30 79.46 92.56 97.62 100.00
Cooke K6 119.250 0.000 0.399 0.305 0.234 52.38 80.06 94.35 97.92 100.00
Kane 119.043 0.000 0.404 0.307 0.238 52.38 78.87 93.15 97.62 100.00
Karmona 119.430 0.005 0.415 0.325 0.250 51.79 78.57 93.45 97.92 100.00
Naeser 2 1.439

0.940
0.004 0.447 0.342 0.259 50.30 76.79 90.77 96.43 100.00

Olsen (OLCR) 4.94 0.000 0.459 0.364 0.302 43.75 74.11 89.88 97.02 100.00
Pearl-DGS 119.299 0.000 0.408 0.313 0.243 53.57 77.98 93.15 98.21 100.00
RBF 3.0 119.031 0.000 0.404 0.306 0.233 53.27 80.95 93.15 98.51 100.00
T2 119.034 0.000 0.424 0.327 0.266 49.70 77.38 92.26 96.73 100.00
VRF 5.598 0.001 0.445 0.342 0.273 48.21 75.00 90.77 97.62 100.00
VRF-G 119.088 0.002 0.403 0.305 0.238 52.38 81.55 94.64 97.62 100.00
PE = mean prediction error. SD = standard deviation of the error. MedAE = median absolute error. MAE = mean absolute error. D = diopter
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In the group with corneal power less than 43 D (n = 65), 
VRF-G, EVO2.0, Kane, and K6 showed SDs of ± 0.370D, 
± 0.379D, ± 0.380D, and ± 0.383D, respectively, and MAEs 
of 0.294D, 0.291D, 0.299D, and 0.294D. The proportion of 
eyes achieving a PE within ± 0.50D ranged from 81.54 to 
86.15%. The BUII formula had an SD of ± 0.469D, higher 
compared to EVO2.0 and K6 (all P < 0.001). The VRF for-
mula had higher SD of ± 0.468D than EVO2.0, Kane, Hof-
fer QST and VRF-G formulas (all P < 0.05).

In the subgroup with corneal power between 43 D and 
46 D (n = 205), the RBF3.0, Karmona, K6, BUII, VRF-G, 
Pearl-DGS, Kane, and EVO2.0 formulas had SDs rang-
ing from ± 0.405D to ± 0.417D and MAEs from 0.307D 
to 0.320D. The percentage of eyes within ± 0.50D PE for 
VRF-G and RBF3.0 was above 80.0%. Olsen (OLCR) and 
Castrop showed higher SDs of ± 0.470D and ± 0.450D, 
and MAEs of 0.368D and 0.356D, respectively. A statisti-
cal analysis of the SDs and MAEs revealed significant dif-
ferences among all formulas in Table 3.

In the group with corneal power of 46 D or higher 
(n = 66), EVO2.0, RBF3.0, Hoffer QST, K6, and Kane had 
SDs between ± 0.375D and ± 0.384D. The RBF3.0, K6 and 
Kane also achieved the lowest MAEs (0.279D, 0.290D, 

0.291D, respectively) and which were significantly lower 
than the Castrop (all P < 0.001). Olsen (OLCR) and Cas-
trop recorded higher SDs of ± 0.436D and ± 0.448D, and 
higher MAEs of 0.361D and 0.353D, with the lowest per-
centages of eyes achieving PE within ± 0.25D and ± 0.50D.

Discussion
This study conducted a comprehensive assessment of 14 
newer IOL calculation formulas, with specific empha-
sis on their accuracy in predicting outcomes for differ-
ent corneal curvatures. Our findings provide valuable 
insights into the nuanced performance of these formu-
las in relation to corneal power, offering valuable guid-
ance for their appropriate application in specific corneal 
profiles.

Our analysis revealed that the VRF-G, EVO2.0, Kane, 
and K6 formulas demonstrate exceptional accuracy in 
eyes with flat corneal power. These formulas seem to 
effectively compensate for the unique optical characteris-
tics presented by flat corneas. The VRF-G formula, which 
incorporates elements of theoretical optics, regression 
analysis, and ray tracing [13], contributing to its high pre-
cision in this group. This aligns with the accuracy levels 

Fig. 1 Violin diagrams of absolute prediction error for 14 formulas in all patients and subgroups
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reported in earlier studies [16, 17, 32]. Additionally, the 
K6 formula, which has not been as extensively studied as 
others, exhibited notable performance in eyes with short 
and long ALs, displaying results comparable to those of 
the Kane and EVO2.0 formulas [10, 17, 18]. Kane and 
EVO2.0 also performed well and have good stability in 
flat cornea group. This finding was consistent with many 
previous studies [16, 19, 33, 34]. 

The middle range of corneal curvature presented a 
different challenge, with formulas such as RBF3.0, Kar-
mona, K6, BUII, VRF-G, Pearl-DGS, Kane, and EVO2.0 
showing commendable accuracy. Interestingly, formu-
las like Pearl-DGS [10], despite being not better than 
the other new formulas in several studies [17, 34, 35], 
showcased promising results, comparable to established 
formulas like Kane and EVO2.0 in the medium K group. 
The Karmona formula was designed and programmed 
in Shiny-RStudio version 1.1.423 (R Foundation, Boston, 
USA) by David Carmona González [6] and reported bet-
ter results (SD = ± 0.30D) than ours (SD = ± 0.415D). This 
variance could be attributed to our inability to obtain 

the mean keratometry of posterior surface to substitute 
into the calculations. To the best of our knowledge, few 
studies investigated the accuracy of Karmona formula in 
different range of corneal power and in our results, the 
Karmona formula showed good accuracy in the medium 
K group.

For steep corneal powers, our findings suggested a 
superior performance from formulas like RBF3.0, K6, 
and Kane. The EVO2.0 and Hoffer QST also performed 
well. The RBF3.0 formula was found to have good results 
at different corneal curvatures in our previous studies in 
long eyes [33]. The K6 formula showed its effectiveness in 
both flat and steep corneas, although its efficacy in long 
eyes with abnormal corneal power was somewhat less 
pronounced [33]. The Kane formula maintained its accu-
racy across eyes with abnormal corneal power, in both 
normal and long ALs, as supported by the results of this 
and previous studies [33]. 

Some limitations have been identified in this study. 
Firstly, we refrained from comparing classic formu-
las due to prior studies [1, 23] evaluating the efficacy of 

Fig. 2 Stacked histogram of percentages with PE within different range in all patients and subgroups
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conventional formulas across various ranges of corneal 
curvature. Furthermore, the exclusion of more extreme 
ocular parameters, particularly in eyes with atypical ALs, 
might limit the applicability of our findings to a broader 
patient population. Also, additional ocular biology mea-
surements should be obtained, such as the mean kera-
tometry of posterior surface and total keratometry, which 
may have had a impact on the postoperative refraction 
and needs more investigation.

In summary, our study offers valuable insights into the 
performance of various newer-generation IOL calcula-
tion formulas across different corneal curvature groups. 
The VRF-G, EVO2.0, Kane, K6 showed good accuracy 
in flat K eyes, while the RBF3.0, K6 and Kane performed 
better in eyes with steep corneal power.
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