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Abstract
Background: Paralemmin (Palm) is a prenyl-palmitoyl anchored membrane protein that can drive
membrane and process formation in neurons. Earlier studies have shown brain preferred Palm
expression, although this protein is a major water insoluble protein in chicken lens fiber cells and
the Palm gene may be regulated by Pax6.

Methods: The expression profile of Palm protein in the embryonic, newborn and adult mouse eye
as well as dissociated retinal neurons was determined by confocal immunofluorescence. The
relative mRNA levels of Palm, Palmdelphin (PalmD) and paralemmin2 (Palm2) in the lens and retina
were determined by real time rt-PCR.

Results: In the lens, Palm is already expressed at 9.5 dpc in the lens placode, and this expression
is maintained in the lens vesicle throughout the formation of the adult lens. Palm is largely absent
from the optic vesicle but is detectable at 10.5 dpc in the optic cup. In the developing retina, Palm
expression transiently upregulates during the formation of optic nerve as well as in the formation
of both the inner and outer plexiform layers. In short term dissociated chick retinal cultures, Palm
protein is easily detectable, but the levels appear to reduce sharply as the cultures age. Palm mRNA
was found at much higher levels relative to Palm2 or PalmD in both the retina and lens.

Conclusion: Palm is the major paralemmin family member expressed in the retina and lens and its
expression in the retina transiently upregulates during active neurite outgrowth. The expression
pattern of Palm in the eye is consistent with it being a Pax6 responsive gene. Since Palm is known
to be able to drive membrane formation in brain neurons, it is possible that this molecule is crucial
for the increase in membrane formation during lens fiber cell differentiation.
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Background
The retina and lens form from the neural tube and head
ectoderm respectively. Despite these different origins, the
development of the mature eye requires mutually induc-
tive interactions between these two cell layers [1]. Further,
in many cases, the lens and retina express the same devel-
opmentally important transcription factors [2-6]. In addi-
tion, a number of studies have identified the expression of
proteins with known roles in neuronal function in the
lens [7-12] and proteins important in lens function in the
retina [13,14]. This may partially be due to the need of
both retinal neurons and lens fiber cells to develop elabo-
rated plasma membranes for their function [15-17].

Pax6 is a paired and homeodomain containing transcrip-
tion factor that is required for the formation of the lens
placode from the head ectoderm [18]. Specific loss of Pax6
expression from retinal progenitor cells results in the con-
version of all retinal cell types to amacrine interneurons
[19] and lens epithelial cells heterozygous for a Pax6
mutation preferentially differentiate into lens fiber cells
[20]. Overexpression of the canonical form of Pax6 in lens
fiber cells (Pax6 con transgenics) results in cataracts typi-
fied by incomplete lens fiber cell elongation and denucle-
ation, instability of the transcription factor c-Maf and a
drastic downregulation of βB1-crystallin expression [21]
while overexpression of the Pax6 (5a) splice form also
results in cataracts without the changes in cMaf stability
[22]. Microarray analysis was previously performed on
lenses from both Pax6 (con) transgenics and mice hetero-
zygous for a Pax6 null allele and 13 genes were found to
be upregulated in the transgenics and downregulated in
the heterozygous knockout mice [23].

One of these genes, paralemmin (Palm), encodes a protein
present at the plasma membrane in axons, dendrites and
perikarya of differentiating neuronal cell lines, and at high
levels in the processes of the cerebellar molecular layer
[24]. Further, this gene is downregulated in lenses overex-
pressing the Pax6(5a) splice variant [25] and the protein
is detected in lens cells from both mice and chickens
[25,26]. Overexpression of Palm in both neuronal and
non-neuronal cell lines initiates the expansion of the
plasma membrane and the development of extended
processes and microspikes which is dependent on Palm
targeting to the cytoplasmic face of the plasma membrane
via a palmitoyl group covalently linked near the protein's
C-terminus [24,27].

Here we investigate the distribution of Palm in the devel-
oping lens and retina, and compare its mRNA levels with
two other members of the paralemmin family, paralem-
min-2 (Palm-2) and palmdelphin/paralemmin-like (PalmD)
[28,29].

Methods
Animals
All experiments using animals were approved by the both
the University of Delaware and Albert Einstein College of
Medicine Institutional Animal Care Committees and con-
form to the ARVO statement for the Use of Animals in
Ophthalmic and Vision Research. C57Bl/6 mice were gen-
erated in-house from breeding stock obtained from Har-
lan Sprague Dawley (Indianapolis, IN). CD-1 mice were
obtained directly from Charles River Laboratories (Wilm-
ington, MA). Embryonic mice were staged by designating
noon of the day on which a semen plug was observed in
the dam as 0.5 days post-coitum (dpc). Postnatal mice
were staged by designating the day of birth as 1 day post-
natal (DPN). All mice were maintained in a 12-hour light/
dark cycle at 21–24°C and were given food and water ad
libitum.

Immunofluorescent detection of Palm in tissue sections
Palm was detected by indirect immunofluorescence fol-
lowing the protocol previously described [30]. Briefly, tis-
sue or embryos were excised from C57Bl/6 mice,
embedded in tissue freezing media (TFM, Triangle Bio-
medical Sciences, Durham, NC) and sectioned at 16 µM
on a Leica CM 3050 S Cryostat (Leica, Deerfield, IL). Sec-
tions were mounted on Colorfrost-plus™ slides (Fisher
Scientific; Pittsburgh, PA), fixed in ice-cold acetone:meth-
anol (1:1 vol/vol) for 15 minutes, dried and blocked with
1% BSA in phosphate buffered saline (PBS), pH 7.4. The
blocking solution was removed and the sections incu-
bated with a 1:150 dilution of rabbit polyclonal anti-Palm
antibody [24] in 1% BSA-PBS for one hour at room tem-
perature. The bound primary antibody was detected with
AlexaFluor 568 goat anti-rabbit IgG (Molecular Probes,
Inc. Eugene, OR) and cell nuclei were detected by counter-
staining with TO-PRO-3 (1:3000 dilution in 1% BSA-PBS;
Molecular Probes, Inc). Negative controls consisted of
parallel staining experiments that omitted the primary
antibody. Images were captured on a Zeiss LSM 510 Con-
focal Microscope configured with an Argon/Krypton laser
(488 nm and 568 nm excitation lines) and Helium Neon
laser (633 nm excitation line)(Carl Zeiss Inc, Göttingen,
Germany).

Transfections and reporter assays
Four copies of the Pax6-binding site previously identified
in the human PALM promoter [25] were cloned into
E4TATA-pGL3 [31] using a synthetic double stranded oli-
gonucleotide 5'-
ctagGGCTACTTTCACTCTGCGATGGCAGAGCAG-
GGCTACTTTCACTCTGCGATGGCAGAGCA-3'. Nucle-
otides containing Pax6-binding sites are in bold and
nucleotides used for subcloning are indicated by lower
case letters. Transient transfection assays were performed
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in 293T cells, which do not express endogenous Pax6 pro-
teins, as described earlier [32].

Immunofluorescent detection of Palm in cultured chick 
retina
Fertile White Leghorn eggs were obtained from the
Department of Animal and Food Sciences at the Univer-
sity of Delaware and kept in a humidified, forced-draft
incubator until embryonic day (E) 7. Retinas were dis-
sected in calcium and magnesium-free saline solution
(CMF). The neural retina was separated from the pig-
mented epithelium with fine forceps. The neural retina
was minced with fine scissors and incubated in 0.25%
trypsin in CMF for 20 minutes at 37°C. Retinas were dis-
sociated into single cells by trituration with a Pasteur pipet
in a 0.3 mg/ml soybean trypsin inhibitor/ 0.03 mg/ml
DNaseI in Medium 199 (Cellgro, Herndon, Virginia).
Cells were plated at a density of 5 × 105 cells / 12 mm
diameter round glass coverslip in wells of a 24-well plate
in one milliliter of Medium 199 (Cellgro) supplemented
with 10% fetal bovine serum. Retina cultures were kept in
a standard humidified culture incubator with 5% CO2.

Two days or one week after plating, cultures were fixed in
1% paraformaldehyde in PBS pH 7.4 for 30 minutes and
then rinsed in PBS. Cells were then incubated for approx-
imately 1 hour in a mixture of 1:200 rabbit polyclonal
anti-chicken Palm [26] and 1:2 mouse monoclonal anti-
neurofilament (RT-97) hybridoma supernatant (Develop-
mental Studies Hybridoma Bank, Iowa City, IA; [33,34])
in PBS supplemented with 5% normal goat serum (NGS)
and 0.03% Triton X-100 (TX-100). Cultures were rinsed in
PBS and then incubated for approximately 1 hour in a
mixture of 1:200 Alexa 488-goat anti-rabbit and 1:200
Alexa 594-goat anti-mouse secondary antibodies (both
from Molecular Probes, Inc., Eugene OR) in the PBS/NGS/
TX-100 mixture. Cultures were then rinsed in PBS and
coverslips were mounted on glass slides in a buffered glyc-
erol mounting medium containing ρ-phenylenediamine
to retard photo-bleaching. Cultures were observed and
photographed using a Nikon Microphot FX epifluores-
cence microscope equipped with a Nikon DXM-1200
CCD camera. Red and green channel images were merged
using Adobe Photoshop.

Real Time RT-PCR
Tissue microdissected from the lens, cerebellum and tel-
encephalon was stored in RNA later (Qiagen, Valencia,
California). Total RNA from the lens, cerebellum and
forebrain of newborn CD-1 mice was isolated using the
RNeasy Protect Mini Kit (Qiagen). Retinal P0, P4 and P22
RNA was kindly provided by Drs. Mike Dorrel and Ken-
neth Mitton, respectively. DNaseI digestion was per-
formed during RNA isolation with RNase-Free DNase Set
(Qiagen). The RNA was quantified with an Agilent 2100

Bioanalyzer and first strand cDNA was then synthesized
using 5 µg of RNA, Oligo(dT)12–18 primer and Superscript
II RT (Invitrogen, Carlsbad, California) as per manufac-
turer's instructions. The cDNA was diluted 1:10 and PCR
reactions were conducted using 2 µl of cDNA, 50 nm of
forward and reverse primers, and 2X SYBR Green PCR
Master Mix (Applied Biosystems, Foster City, California).
Amplification of the cDNA was performed using a 7900
HP Applied Biosystems Real Time PCR machine. The
cDNA was initially denatured at 94°C for 5 minutes, fol-
lowed by 45 cycles of 94°C for 10 seconds, annealing at
60°C for 20 seconds, and extension at 72°C for 30 sec-
onds. A final extension at 72°C for 5 minutes was then
conducted. Each gene was amplified nine times (three
times as triplicate experiments). The primers used with
Ensembl or NCBI accession numbers follow: Palm
(ENSMUSG00000035863) (5' -AGCAGGCAGAGATTGA-
GAGC-3' and 5' -AGCCAGCGTTCCCTCAGT-3'); Palm2
(NM 172868) (5' -CGCAGGCAGTCTGAAGAAG-3' and 5'
-TTTCGAGCGCTTGTATTTCC-3'); PalmD
(ENSMUSG00000033377) (5' -AGTAGCTGGAGACG-
GGACTG-3' and 5' -CACGGCTCTCAGATCACCTT-3').
The housekeeping genes β2-microglobulin, B2M
(ENSMUSG00000033376) (5' -TGGTGCTTGTCTCACT-
GACC-3' and 5' -TATGTTCGGCTTCCCATTCT-3'); Hypox-
anthine-guanine phosphoribosyltransferase, HPRT
(ENSMUSG00000025630) (5' -GTTGTTGGATAT-
GCCCTTGA-3' and 5' -GGCTTTGTATTTGGCTTTTCC-3'):
and succinate dehydrogenase, SDHA
(ENSMUSG00000021577) (5'-GAGGAAGCACAC-
CCTCTCATA-3' and 5' -GCACAGTCAGCCTCATTCAA-3')
were used for normalization of gene expression levels.
Each primer set was designed using Primer3 [35] and spe-
cificity verified by NCBI Blast [36]. Standard PCR was then
performed to verify amplification of a single PCR product
bearing the correct size. The dissociation curve of each
PCR amplicon was analyzed using ABI PRISM SDS 2.0
and revealed a single peak, indicating specific PCR ampli-
fication [37].

The mRNA levels were normalized to the internal house-
keeping gene, B2M and the change in Ct values for each
gene (∆Ct) were determined according to the standard
method [38,39]. The standard deviation calculated for
each sample was less than 5% and was therefore not
shown in Figure 5. The primers used had similar efficien-
cies for amplification as determined by serial dilution
experiments [38].

Results and discussion
Previously, we determined that Palm gene expression is
downregulated in lenses from mice lacking one copy of
the Pax6 gene [25] and upregulated in lenses overexpress-
ing Pax6 [23]. Since potential Pax6 binding sites were
identified upstream of the transcriptional start site of Palm
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Localization of Palm protein during early mouse eye developmentFigure 1
Localization of Palm protein during early mouse eye development. A-C, 9.5 dpc; D-F, 10.5 dpc; G-I, 12.5 dpc; A,D,G Palm; 
B,E,H cell nuclei stained with ToPro3, C,F,I, merge; Abbreviations- lp, lens placode; ov, optic vesicle; he, head ectoderm; di- 
lumen of the diencephalon; pce- presumptive corneal epithelium; lv- lens vesicle; pnr- presumptive neural retina; ppe- presump-
tive retinal pigmented epithelium; L- lens; nr- neural retina; ce- corneal epithelium; os- optic stalk. Arrowheads denote staining 
in developing neuronal processes that will grow through optic stalk to form the optic nerve. All scale bars are 77 µm. red- 
Palm; blue-ToPro3 DNA stain.
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[25], Palm may be a direct Pax6 target gene. Thus, we
undertook a developmental expression study of Palm in
the eye to assess the extent that its expression overlaps that
of Pax6.

At 9.5 dpc, Palm immunoreactivity is prominent in the
head ectoderm overlying the optic vesicle that is fated to
give rise to the lens and corneal epithelium with much
lower, but detectable, levels of expression in the optic ves-
icle (Figure 1A,B,C). At 10.5 dpc, Palm protein is detected
at relatively similar levels in the presumptive neural ret-
ina, retinal pigmented epithelium (RPE), corneal epithe-
lium and lens vesicle (Figure 1D,E,F). This overlaps well
with Pax6 expression in both the optic vesicle and devel-
oping lens placode/ vesicle in mice [18,40]. By 11.5 dpc,
relative Palm levels have decreased in the presumptive
RPE although staining is still detected in both the periocu-
lar mesenchyme and presumptive neural retina (data not
shown). At 12.5 dpc, intense Palm immunoreactivity is
detected at the vitreal surface of the neural retina (Figure
1G, H, I), corresponding to the formation of the ganglion
cell processes that will migrate down the optic stalk to
form the neural component of the optic nerve [41,42].

This only partially corresponds with Pax6 expression at
this stage, since Pax6 expression has been reported in the
developing RPE of 13 dpc embryos [43], although the RPE
can produce pigment without Pax6 [4]. The presence of
Palm in ganglion cell processes at this stage is interesting
since Pax6 expression is noted in mature ganglion cells of
the adult retina although Pax6 is detected in only a subset
of 13 dpc neural retinal precursors [43].

In the developing mouse lens, Palm expression is seen at
both epithelial and fiber cell membranes from 11.5 dpc
and is maintained in these cells throughout adulthood
(Figure 1D–I; Figure 2). The presence of Palm in all lens
cells early in development correlates well with the
reported expression pattern of Pax6 in the embryonic lens
[18]. During lens maturation, Pax6 expression decreases
in lens fiber cells relative to the lens epithelium
[21,22,44]. However, newborn rat lens fiber cells still
maintain 12% of the levels seen in lens epithelium [45]
although Pax6 mRNA levels are 95 fold lower in aged
human lens fibers [46]. Since Palm mRNA levels are
decreased in lenses from Pax6 heterozygous mice [25] and
upregulated in lenses overexpressing Pax6 in lens fiber

Localization of paralemmin protein in the mouse lens A-C 14.5 dpc; D 14.5 dpc negative control E-G One week post natal; H- 25 weeks postnatalFigure 2
Localization of paralemmin protein in the mouse lens A-C 14.5 dpc; D 14.5 dpc negative control E-G One week post natal; H- 
25 weeks postnatal. I- 25 weeks postnatal negative control A,E- paralemmin; B,F- cell nuclei stained with ToPro3; C, D, G, H, I- 
merge; Scale bars- A-C, 154 µm; D-G, 77 µm; red- paralemmin; blue-ToPro3 DNA stain.
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cells [23], it is plausible that Palm expression is either
directly responsive to Pax6 or controlled by genes in the
same pathway.

In order to test this proposition functionally, we cloned
the Pax6 binding site previously identified in the 5'-flank-
ing region of human PALM [25] in front of a basal pro-
moter and performed transient transfections in 293T cells
which lack endogenous Pax6 proteins [32]. Co-transfec-
tion of this reporter construct with Pax6 and Pax6(5a)
expression vectors activated this artificial promoter 3.4-
and 2.1-fold, respectively while addition of both expres-
sion vectors simultaneously yielded a reporter activation
similar to that of the Pax6 expression vector alone (Figure
3). These levels of Pax6 mediated activation are compara-
ble to those typically obtained in transient transfections
with Pax6 responsive promoters [44,47,48]. From these
data, it appears likely that the human PALM promoter
contains a Pax6-binding site functionally able to interact
with both Pax6 and Pax6(5a) consistent with the upregu-
lation of PALM expression in transgenic mice overexpress-
ing Pax6 in the lens and reduced expression of Palm in
Pax6 heterozygous lenses [23,25,49]. However, the func-
tional significance of this Pax6 site in the context of the
PALM gene is more difficult to ascertain since neither the
transcriptional start site nor the functional minimal pro-
moter of PALM have been experimentally investigated.
Further studies of PALM/Palm promoters are necessary to
fully establish their direct regulation by Pax6 proteins.

In the developing retina, the intense Palm staining seen in
elongating ganglion cell axons at 12.5 dpc downregulated
markedly by 14.5 dpc as the development of these proc-
esses completes [41] (data not shown). At 16.5 dpc, Palm
immunoreactivity is maintained at moderate levels in the
cell bodies of both differentiating ganglion cells and
undifferentiated neural precursors, but appears slightly
stronger in the first morphologically distinguishable
axons of the developing inner plexiform layer (ipl) which
is composed of cell processes of the neurons of the inner
nuclear layer and ganglion cells [50](Figure 4A,B,C). At
birth, Palm levels are upregulated in the developing inner
plexiform layer (inl) which is in the process of rapid
expansion (Figure 4D,E,F). As the development of ipl pro-
ceeds, the intensity of Palm staining in this layer drops to
that seen in the cell bodies of the ganglion cell and inl
(Figure 4G–L). While not as dramatic, localized expres-
sion is seen in the developing outer plexiform layer (opl)
processes at 1 week pn (Figure 4G–I), although both at
that time and in the adult (Figure 4J–L), much less Palm
staining is seen on the photoreceptor cell bodies of the
outer nuclear layer then in any other retinal layer. Nota-
ble, Pax6 expression persists in both retinal ganglion cells
and the inner nuclear layer into adulthood, correlating

well with the expression pattern of Palm in this tissue
[43].

In neuronal cell lines, Palm was previously detected at the
cell membrane of the cell body and developing axons as
well as in a granular localization intracellularly. In vivo,
Palm co-purifies with chick brain synaptic plasma mem-
branes consistent with its palmitoylation [24]. While the
staining pattern of Palm in the developing mouse retina is
consistent with this membrane localization, we wanted to
confirm this in dissociated retinal cultures. The neural ret-
ina of the E7 chick is at a period of extensive neurogenesis,
migration, and process formation in vivo, especially of
ganglion cells [51-53]. This ability to extend neurites is
also manifest in cultures made from this age retinal tissue
[54,55]. Chick retinas were dissociated, plated and stained
for Palm either 2 days or 7 days after plating. After 2 days
in culture (Figure 5A–C), Palm appears expressed by most
cells and is evident at the plasma membrane and as intra-

Pax6 proteins activate expression from a reporter consisting of four copies of a PAX6-binding site found in the putative 5' flanking sequence of the human PALM gene cloned upstream of the E4 basal promoterFigure 3
Pax6 proteins activate expression from a reporter consisting 
of four copies of a PAX6-binding site found in the putative 5' 
flanking sequence of the human PALM gene cloned upstream 
of the E4 basal promoter. (A) An alignment between the 
PAX6 site found in the PALM gene and a consensus paired 
domain Pax6-binding site, P6CON. Non-conserved nucle-
otides are shown in lower case letters. (B) Results of co-
transfections in 293T cells. 200 ng of Pax6 and 25 ng of 
Pax6(5a) expression plasmids were used as indicated per 
experiment. The data were normalized using Renilla luciferase 
[31] and are expressed as a relative ratio of promoter activ-
ity in the presence of Pax6 compared to the presence of 
empty vector, pKW10.
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Localization of paralemmin protein during mouse retinal development A-C, 16.5 dpc, arrowheads- emerging inner plexiform layerFigure 4
Localization of paralemmin protein during mouse retinal development A-C, 16.5 dpc, arrowheads- emerging inner plexiform 
layer; D-F 1 day pn; G-I 1 week pn; J-L 2 week pn; A,D,G,J- paralemmin; B,E,H,K- cell nuclei stained with ToPro3; C,F,I,L- 
merge; Abbreviations- unp- undifferentiated retinal precursors; gc- ganglion cell; ipl- inner plexiform layer; s*- background 
staining in the sclera; inl- inner nuclear layer; opl- outer plexiform layer; onl- outer nuclear layer. All scale bars are 77 µm. red- 
paralemmin; blue-ToPro3 DNA stain.
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cellular puncta. Fine processes resembling axons (arrows)
that sometimes stain with the anti-neurofilament anti-
body RT-97 [33] are also positive for Palm immunoreac-
tivity. After 7 days in culture (Figure 5D–F), Palm staining
appears punctate but more diffuse in the cell body, and
does not appear to be localized on the numerous long
processes stained for neurofilament. Thus, like in the
mouse retina in vivo, Palm is detected in retinal cultures
undergoing active process formation while it is less evi-
dent in mature cells, which are undergoing less process
extension.

Palm is a member of a multigene family consisting of two
other family members, paralemmin-2 (Palm-2) and palm-
delphin/paralemmin-like (PalmD/PalmL) [28,29]. Palm2
shares 37% amino acid identity with Palm and like Palm
has a C-terminal CaaX motif that could potentially be pre-
nylated. However, the Palm2 gene is alternatively spliced
and not all variants contain the prenylation motif. PalmD
is 23% identical to Palm but generally lacks a C-terminal
prenylation motif although rare splice variants have an

alternative C-terminus containing a prenylation motif
similar to Palm. Experimentally, the majority of PalmD is
cytoplasmic and does not co-purify with plasma mem-
brane fractions [28,29]. Since Palm is potentially able to
modulate plasma membrane growth in the lens, retina
and brain, while Palm2 and PalmD are of related
sequence, we performed quantitative rt-PCR to compare
the relative expression levels of all three paralemmin fam-
ily members in the lens, retina, cerebellum and forebrain.

The ratio between the housekeeping genes tested, B2M,
HPRT and SDHA, in the different tissues analyzed was
found to range between 0.98–1.04. Since the ratio of an
ideal internal control between various tissues would be 1
and the variability of each of our internal normalizing
genes between the various tissues assayed was low, we
normalized our data to one housekeeping gene, B2M
[39,56].

In the lens, cerebellum, forebrain and retina, Palm tran-
scripts are significantly more abundant relative to B2M

Expression and localization of Palm in chick retinal culturesFigure 5
Expression and localization of Palm in chick retinal cultures. Cultures were immunostained with polyclonal anti-Palm (A, D) and 
RT-97 anti-neurofilament (B, E) antibodies after 2 (A-C) or 7 (D-F) days in culture. For each pair, the merged images are 
shown in C and F. After 2 days in culture, Palm is present on most cells at cell borders as well as intracellular puncta (A). Fine 
processes resembling axons (arrows) that are sometimes positive for RT-97 (B) are also labeled. After 7 days in culture, Palm 
staining appears punctate but more diffuse (D), and does not appear to be localized on the numerous long processes stained 
with RT-97 (F). Bar in D, 25µm. Green- Palm; Red-RT-97;
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than those of either Palm2 or PalmD (Figure 6). Notably,
Palm mRNA is more abundant in retinas isolated shortly
after birth compared to the adult retina, correlating well
with the expression of Palm protein detected by immuno-
histochemistry. Palm is alternatively spliced, and previous
western blot analysis of mouse lens protein detected the
60 kDa form of paralemmin [25] which translates from
mRNA lacking exon 8 [24]. Parallel qt-PCR analyses of the
lens and retina for Palm transcripts harboring exon 8 only
detected low levels of this splice variant in all cases (data
not shown) which would be translated into a 80 kDa pro-
tein. In the lens and forebrain, appreciable Palm2 expres-
sion was detected (Ct values of about 21.5) while Palm2
levels are relatively low in all post natal retinal samples
tested (Ct values of about 28.5). PalmD transcripts were
usually present at low levels in the tissues examined with
Ct values of about 26. Co-expression of Palm with Palm2
in tissues examined will aid to the interpretation of gene
targeting studies of this family of genes.

Conclusion
The lens and retina express paralemmin during develop-
ment with its transient upregulation during the formation
of optic nerve and formation of both plexiform layers.

Further, the putative PALM promoter contains a func-
tional Pax6 binding site and the developmental expres-
sion pattern of Palm in the eye generally correlates well
with that reported for Pax6, leading credence to the idea
that Palm is a Pax6 directly-regulated gene.

Abbreviations
dpc, days post coitum; PBS- phosphate buffered saline;
inl, inner nuclear layer; onl; outer nuclear layer; opl, outer
plexiform layer; ipl; inner plexiform layer; pn, post-natal;
rpe, retinal pigmented epithelium.
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