Skip to main content

Table 3 Binary logistic regression model with all variables

From: A predictive model for early diagnosis of keratoconus

  β S.E. Wald df Sig. Exp(β)(OR)
Kmax −0.11 0.18 0.39 1 0.53 0.9
Q −1.1 1.81 0.37 1 0.54 0.33
MCT −0.05 0.01 12.77 1 0.00* 0.95
Ant coma 0° 1.65 2.51 0.43 1 0.51 5.19
Post coma 0° −14.65 10.81 1.84 1 0.18 0
Ant coma 90° −4.13 2.15 3.68 1 0.06** 0.02
Post coma 90° 24.97 9.02 7.67 1 0.01* 69,920,300,645
Trefoil 0° −1.56 1.79 0.75 1 0.39 0.21
Trefoil 30° −0.81 1.59 0.26 1.00 0.61 0.44
Tetrafoil 0° −0.02 2.22 0.00 1.00 0.99 0.98
Tetrafoil 22.5° 2.15 4.27 0.25 1.00 0.61 8.59
Sph Aberrat −3.90 3.73 1.10 1.00 0.29 0.02
Constant 27.81 10.56 6.94 1.00 0.01 1,199,896,240,521.74
  1. *p < 0.05, **p < 0.1. Dependent variable: Normal vs ESKC. MCT = Minimum corneal thickness, Sph Aberrat = Spherical Aberration