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Abstract

Background: Hsf4 is closely related to the development of cataract. However, the molecular mechanisms remain
unknown. This study aimed to explore the molecular mechanisms that how Hsf4 mutations influence development
of lens and thus lead to cataract in mouse.

Methods: The mRNA expression profile of mouse tissue samples from Hsf4-null and wile-type lenses was
downloaded from Gene Expression Omnibus database. Then the LIMMA package was used to screen differentially
expressed genes (DEGs) and DAVID was applied to identify the significantly enriched Gene Ontology (GO)
categories for DEGs. Furthermore, the protein-protein interaction (PPl) network of DEGs was constructed using
Cytoscape and the key modules were selected from the PPI network based on the MCODE analysis.

Results: A total of 216 DEGs were screened, including 51 up- and 165 down-regulated genes. Meanwhile, nine GO
terms were obtained, and DEGs such as SGKT, CRY2 and REV] were enriched in response to DNA damage stimulus.
Furthermore, 89 DEGs and 99 gene pairs were mapped into the PPl network and Ubc was the hob node. Two key

response to DNA damage stimulus.

modules, which contained the genes (e.q. Ubc, Egrl, Ptgs2, Hmox1, Cd44, Btg2, Cyr61 and Fos) were related to

Conclusions: The deletion of Hsf4 affects the expression of many genes, such as Ubc, Ptgs2, Egrl and Fos. These
genes may be involved in the development of cataract and could be used as therapeutic targets for cataract.
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Background

Cataract is a visible opacity in the lens substance which
leads to a decrease in vision. The lens is a critical re-
fractive element of the eye which, with the cornea, fo-
cuses images of the visual world onto the retina [1].
Previous study has indicated that both the structure and
stability of lens crystallins and maintenance of strong
cellular homeostatic systems are required for sustaining
normal function of lens [2]. Age and genetic component
are main factors to influence the development of lens
and hence cause cataract [3]. Nowadays, cataract re-
mains the leading cause of blindness in the world, espe-
cially in developing countries [4].
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Heat shock transcription factor 4 (Hsf4), a member of
Hsf family, is the common gene linked to cataractogen-
esis and it has been regarded as a causative gene for con-
genital cataract [5]. Hsf4 is expressed exclusively in the
ocular lens and acts a key role in the lens formation and
differentiation [6]. Besides, Hsf4 regulates DLAD expres-
sion and promotes lens de-nucleation [5], and it is in-
volved in the negative regulation of DNA binding
activity [7]. Furthermore, Cui et al. have found that Hsf4
promotes DNA damage repair through the regulation of
Rad51 expression [8]. It has been also reported that Hsf4
mutations may also be associated with age-related cata-
ract [9] and mutations in the DNA binding domain
(A20D, 187V, L115P, R120C and R74H) of Hsf4 cause
autosomal dominant cataract [7, 10, 11]. Meanwhile,
several studies have reported that mutations located in
the other domain of Hsf4 contribute to the autosomal
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recessive cataract [12—14]. Also, removal of Hsf4 has
been found to lead to cataract development in the Hsf4-
null (Hsf4-/-) mice through reduction of yS-crystallin
and Bfsp expression [15].

Gene microarray analysis provides a powerful method
for rapid, comprehensive, and quantitative analysis of
gene expression profiles of normal/disease states and de-
velopmental processes [16]. Thus, the expression levels
of thousands of genes can be quantified simultaneously
with this technology [17]. Using gene microarray ana-
lysis, He et al. [18] have found that Brgl, Hsf4 and Pax6
exert their functions through commonly regulating other
genes. However, the molecular mechanisms of Hsf4 are
still not fully understood. To further investigate the mo-
lecular mechanisms that how mouse Hsf4 (mHsf4) mu-
tations influence lens development and lead to cataract,
the mRNA expression profile of mHsf4-null mutation
and wide-type lens was downloaded from Gene Expres-
sion Omnibus (GEO) database deposited by He et al.
[18]. Then the differentially expressed genes (DEGs)
were identified and used to construct the protein-
protein interaction (PPI) network. Furthermore, the sig-
nificantly enriched functions and important modules
were screened and analyzed.

Methods

Microarray data and data preprocessing

The mRNA expression profile of GSE22362 [18] was ob-
tained from GEO (available at http://www.ncbi.nlm.nih.-
gov/geo/) database [19]. The total microarray contains
six chips of mouse tissue samples from Hsf4-null and
wild-type lenses, which were described as a previous
study [6]. The expression profile was analyzed by the
platform of GPL8321 [Mouse430A_2] Affymetrix
Mouse Genome 430A 2.0 Array (Affymetrix, Inc,
Santa Clara, CA, USA). Raw data were preprocessed
via background correction, quantile normalization
and probe summarization using Affy software pack-
age [20] of R. Then the probe-level data in CEL files
were converted into the mRNA expression values. In
the case, if there was more than one probe in a sin-
gle gene, the average expression values of all probes
for a given gene were defined as the mRNA expres-
sion value. Meanwhile, when several mRNAs were
mapped by one probe, this probe was thought to
lack specificity, and was removed from the analysis.

Screening of DEGs

The wild-type samples were classed as the controls
ant the normalized data were analyzed using LIMMA
(Linear Models for Microarray Data, available at http://
www.bioconductor.org/packages/release/bioc/html/limma.
html, V 3.22.1) package [21]. Then the p-value was ad-
justed into FDR (false discovery rate) [22] by Bonferroni
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method [23] in multtest package. The mRNAs with the
cutoff criteria of |logyfold change (FC)| >1 and FDR <0.05
were considered to be DEGs. Furthermore, to explore
whether the mRNAs were samples-specific, Pheatmap
package (available at http://cran.r-project.org/web/pack-
ages/pheatmap/index.html, V 0.7.7) [24] in R was used to
perform hierarchical clustering by comparing the value of
each mRNA in six samples.

Functional enrichment analysis

The Database for Annotation, Visualization and Inte-
grated Discovery (DAVID) [25] is the most common tool
to analysis the functional enrichment of genes. To iden-
tify the functions of DEGs, the DAVID was used to iden-
tify the significantly enriched GO (Gene Ontology)
categories. The p-value <0.05 was selected as cutoff
criterion.

Construction of PPl network

The Search Tool for the Retrieval of Interacting Genes
(STRING, available at http://www.string-db.org/) data-
base is a useful tool that provides lots of experimental
and predicted information of proteins [26, 27]. In order
to research the relationship between genes, the DEGs
were scanned by the STRING and the PPI pairs were se-
lected with the cutoff criterion of combined score >0.4.
Then the PPI network was visualized using Cytoscape
(available at http://www.cytoscape.org/) [28].

Screening of modules

Proteins encoded by genes in the same module may per-
form the same or similar functions. To further explore
the functions of proteins, the network modules were ob-
tained from the PPI network based on the MCODE analysis
[29]. Default parameters (Degree Cutoff: 2, K-Core: 2) were
set as the threshold for modules screening.

Results

DEGs screening

A set of 216 DEGs were identified in the Hsf4-null sam-
ples compared with wide-type samples, including 51 up-
and 165 down-regulated DEGs. Besides, the hierarchical
clustering analysis indicated that the DEGs in Hsf4-null
samples were distinguished from that in wide-type con-
trols (Fig. 1).

Functional enrichment analysis

In total, nine GO biological processes were obtained
(Fig. 2). Among these functions, DEGs such as BTG2,
HMOX1 and REVI were significantly enriched in re-
sponse to DNA damage stimulus (p = 5.01E-05); DEGs
such as FOS, EGRI and MSXI were distinctly enriched
in response to protein stimulus (p =1.16E-04); DEGs
such as PTGS2, ACVR2A and ALOXI15 were markedly
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Fig. 1 The hierarchical clustering diagram of mMRNA expression. Each column corresponds to a single microarray whereas each row indicates
expression profile of a single gene. Red and blue stand for high and low values in the mRNA expression, respectively. The expression value from
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enriched in skeletal system development (p = 9.74E-04)
(Table 1).

PPl network construction

Among the 261 DGEs, 99 gene pairs were identified with
the combined score >0.4 and 89 DEGs (25 up- and 64
down-regulated) were mapped into the PPI network
(Fig. 3). Several nodes had higher connectivity degrees in
the PPI network, such as Ubc (degree = 18), Ptgs2
(degree = 10), Fos (degree = 9), Cd44 (degree =8), Hsphl
(degree = 6), and Gnajbl (degree = 6) (Table 2).

Screening of modules

The GO enrichment analysis indicated that response to
DNA damage stimulus was the most significant func-
tion. To further understand the relationships between
DNA damage and cataract, MCODE was used to identify
the functional modules of the genes that were related to

DNA damage. As a result, two modules were screened.
Module one contained Ubc, Egrl, Ptgs2, Hmox1 and
Cd44 and module two contained Btg2, Cyr61 and Fos
(Fig. 4).

Discussion

Cataract is the opacification of the eye lens, and is the lead-
ing cause of blindness worldwide [30]. Cataractogenesis has
multiple causes and is often associated with an abnormality
of the lens microarchitecture [31]. Hsf4 is prominently
expressed in the lens compared with in other tissues and
closely related to the development of cataract [5, 32]. In the
present study, we aimed to extend our understanding of
the influence of lens development caused by Hsf4 muta-
tions. Results revealed that expression levels of 216 genes
were altered in mHsf4-null lens compared with wide-type
controls. Functional enrichment results showed that re-
sponse to DNA damage stimulus was the most significant
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protein folding
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Fig. 2 The enriched gene ontology biological processes of differentially expressed genes
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Table 1 The enriched GO terms of differentially expressed genes
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Term Count p-value Genes

GO:0006974 ~ response to DNA damage stimulus 7 5.01E-05 SGKI, CRY2, REV1, TIMELESS, BTG2, DTL, HMOX1

GO:0051789 ~ response to protein stimulus 6 1.16E-04 FOS,EGR1, MSX1, HSPA4L, FAS, CYR61

GO:0001501 ~ skeletal system development 8 9.74E-04 PTGS2,ACVR2A, ALOX15, MSX1, UBC, COLTAT, BMPRIA, IDUA
GO:0010033 ~ response to organic substance 10 1.79E-03 FOS, EGR1,5GK1, MSX1, PYGM, HMOX1, HSPA4L, COL1AT, FAS, CYR61
GO:0009112 ~ nucleobase metabolic process 3 4.84E-03 UMPS, UOX, PPAT

GO:0006457 ~ protein folding 5 5.30E-03 HSPH1, HSPA4L, DNAJB1, DNAJB4, DNAJA4

GO:0033554 ~ cellular response to stress 8 6.81E-03 SGK1, CRY2, REV'1, TIMELESS, BTG2, DTL, HMOX1, MAPK10
GO:0030509 ~ BMP signaling pathway 3 7.67E-03 ACVR2A, MSX1, BMPRTA

GO:0046456 ~ icosanoid biosynthetic process 3 9.65E-03 ALOX15, PTGS2, ALOX12

GO gene ontology

function in mHsf4-null lens. In addition, we identified two
key modules correlated with response to DNA damage
stimulus from the PPI network.

Cataracts may be caused primarily by the DNA dam-
age, such as oxidized purines [33] and DNA single
strand breaks [34]. Study has found that oxidative DNA
damage is significantly high in the lens epithelial cells
(LECs) of cataract patients [35, 36]. Besides, loss-of-
function mutations in TBC1D20 cause cataracts in blind
sterile mice [37]. The DNA damage response (DDR) is a
signal transduction pathway that senses DNA damage
and sets a response to protect the cell and moderate the
threat to the organism [38, 39]. Mice with the knock-
down of HSF4 have cataract because of an increased

proliferation of LECs in the lens as well as an abnormal
lens fiber cell differentiation [8]. Two modules which
were closely related to DDR, were isolated from the
PPI network. Ubc (ubiquitin C/polyubiquitin-C), the
module-related gene, was also showed to be the hub
node in the PPI network. Ubc is one of the sources
of ubiquitin during cell proliferation and stress that
cannot be compensated by other ubiquitin [40]. Ubi-
quitin is a normal component in the lens and a
ubiquitin-dependent proteolytic system exists in lens
[41], which consists of fiber cells that differentiate
from epithelial cells and undergo programmed or-
ganelle degradation during terminal differentiation
[42]. Furthermore, ubiquitination is a reversible post-
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Fig. 3 The protein-protein interaction network of differentially expressed genes (DEGs). The triangles and rectangles indicate up- and
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Table 2 Differentially expressed genes with the top 10 %
connectivity degree in the protein-protein interaction network

Node Degree Node Degree
Ubc 18 Dnajb1 6
Ptgs2 10 Hmox1 5
Fos 9 Egn 5
Cd44 8 Hspa4l 5
Hsph 6 Umps 5

translational modification of cellular proteins and is
considered to play key roles in the regulation of var-
ieties of cellular processes, such as protein degrad-
ation, cell-cycle regulation, DNA repair, apoptosis
and signal transduction [43]. Moreover, the ubiquitin
proteasome system is found to be essential to cell
proliferation of the lens epithelium and required for
differentiation of lens fiber cells in zebrafish [44].
The overexpression of ubiquitin affects ubiquitin
proteasome system and thus disorders cell prolifera-
tion and differentiation of lens. Thus our results
suggested that the lack of Hsf4 up-regulated the ex-
pression of Ubc, which might be involved in the devel-
opment of cataract by regulating the cellular processes
of lens.

Ptgs2 (prostaglandin-endoperoxide synthase 2) is
also known as cyclooxygenase-2 or COX-2, which is
involved in the conversion of arachidonic acid prosta-
glandin H2. In human fibroblasts, Ptgs2 has been
showed to interact with Cavl (Caveolin 1) [45], which
is the main component of the caveolae plasma mem-
branes. Caveolae is cholesterol-rich lipid rafts that are
likely to play important roles in lens [46]. What is
more, Cavl was found to participate in repair of DNA
damage through regulating the important molecules
involved in maintaining genomic integrity [47]. Be-
sides, redundant Cavl has been reported to play a role
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in age-dependent hyporesponsiveness to growth fac-
tors  im vitro and may act as an indicator of wound-
healing capacity in aged human corneal epithelium
[48]. Therefore, Ptgs2 plays a role in the response to
DNA damage and may be related to the repair of DNA
damage in lens through the interaction with Cavl.

Egrl (early growth response 1) belongs to EGR fam-
ily of zinc finger proteins and functions as a transcrip-
tional regulator. It has been reported that the mRNA
expression of Egrl can be used as a marker for the dir-
ection of mammalian ocular growth [49]. In addition,
Fos (FBJ] murine osteosarcoma viral oncogene homo-
log), also named c-FOS, can be induced by a variety of
extracellular stimuli [50] and interact with Jun (jun
proto-oncogene, c-JUN) to form the transcription fac-
tor AP-1 (activating protein 1) [51], which regulates
cell adaptation to environmental changes [52]. Further-
more, Fos and Jun are differentially regulated during
terminal differentiation of lens fiber cells [53]. Thus,
Egrl and Fos may be involved in the cell cycle and
apoptosis of lens.

However, there were some limitations in this study.
For example, there were no experiments to confirm our
predictions. The number of samples were also small.
Considering these issues, the experimental studies will
be subsequently conducted later using more samples.

Conclusions

In conclusion, the deficiency of Hsf4 affect the expres-
sion of a set of genes, especially Ubc, Ptgs2, Egrl and
Fos, which are closely related to the response to DNA
damage stimulus. These genes may be participated in
the development of cataract by influencing the cellular
activities of lens and could be used as therapeutic targets
for cataract if they were validated by the further experi-
ments which would be conducted later.
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