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Identification of lncRNA–miRNA–mRNA
regulatory network associated with primary
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Abstract

Background: Primary open angle glaucoma (POAG) is a multifactorial disorder characterized by a progressive permanent
degeneration of retinal ganglion cell (RGCs) death. An increasing number of studies have suggested that long noncoding
RNAs (lncRNAs) have the ability to regulate gene expression; however, thus far, the mechanisms and functions of lncRNAs in
the development of POAG are still unclear.

Methods: Using the data from Gene Expression Omnibus (GEO), differentially expressed lncRNAs and differentially expressed
mRNAs between POAG patients and controls were identified. Then, the lncRNA–miRNA–mRNA competing endogenous
RNA (ceRNA) network was constructed, and the key lncRNAs in POAG were identified. A Gene Ontology (GO) analysis and a
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed to assess the enriched biological
functions of mRNA in the ceRNA network.

Results: During this study, a POAG-related ceRNA network with 37 miRNA nodes, 248 lncRNA nodes, 178 mRNA nodes, and
1985 edges was constructed. In addition, four lncRNAs (DNAJC27-AS1, AF121898, OIP5-AS1, and SNX29P2) were established
as hub RNAs in this ceRNA network. The functional assay showed that 18 GO terms and 17 pathways were enriched.

Conclusion: This study provides novel insights into the lncRNA-related ceRNA network in POAG, and the four lncRNAs were
identified in the development of POAG.
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Background
Primary open angle glaucoma (POAG), a frequent type of
glaucoma worldwide, is a complex characterized by the
progressive permanent degeneration of retinal ganglion
cell (RGCs) death and distinctive visual field loss [1, 2].
Regarding disease etiology, multiple risk factors, such as
age [3, 4], elevated intraocular pressure (IOP) [5, 6], family
history [7], and ethnic background [8], have been

established in connection with the risk of POAG. In
addition to these risk factors, genetics has also been shown
to play a key role in the pathogenesis of POAG [9–11].
Nevertheless, the actual molecular mechanisms are still
poorly understood.
A non-coding RNA (ncRNA) is an RNA molecule that

is not translated into a protein. The ncRNA molecule
has been found to be involved in master regulators in
various biological pathologic processes [12, 13]. Long
noncoding RNA (lncRNA) is a typical ncRNA with a
non-protein-coding function exceeding 200 nucleotides.
LncRNA has the ability to regulate gene expression by
participating in regulating the transcription and transla-
tion of genes [14, 15]. Recently, emerging evidence has
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suggested the critical role of lncRNAs in the occurrence
of POAG [9, 10, 16]; however, thus far, the mechanisms
and functions of most lncRNAs remain incomprehen-
sible with only a small portion being well-annotated.
Recently, it has been suggested that lncRNAs are

emerging as competing endogenous RNAs (ceRNAs) to
communicate with messenger RNA (mRNA) through
competitive microRNA (miRNA). Ordinarily, miRNAs
can induce target gene degradation or can inhibit mRNA
translation [17]; however, lncRNA can share miRNA re-
sponse elements (MREs) with mRNA and can then alle-
viate the inhibition of the miRNA-mediated target gene
[17]. Thus, it is a competent method used to understand
the complex functions of lncRNA by understanding its
relationship with microRNAs and mRNAs due to the
annotated functions of miRNAs and mRNAs. Thus, bio-
informatic methods were carried out to analyze the gene
expression profile in data sets obtained from the Gene
Expression Omnibus (GEO) for the aim to further deter-
mine an innovative regulatory mechanism based on the
lncRNA–miRNA–mRNA ceRNA theory in the develop-
ment of POAG.

Methods
Sample
This bioinformatics analysis was conducted based on
data that have been made publicly available; ethical ap-
proval was obtained in the original study. Written in-
formed consent was obtained from each participant in
the original study.
The information of patients was also extracted from the

original study as follows. Samples for experimental groups
were obtained from POAG patients who did not receive
any glaucoma medication 4months before surgery and
had uncontrolled IOP. The control group for AH profiling
consisted of age- and sex-matched age-related cataract pa-
tients who were candidates for cataract surgery. The mean
age in the control group is 63.2 ± 3.5 years and in the
POAG group it is 61.0 ± 2.9 years. The IOP were 18.8 ±
0.7 and 27.8 ± 2.1mmHg in the control and POAG
groups, respectively. The proportion of males was 48.8
and 44.2% in the control and POAG groups, respectively.
Aqueous humor (approximately 100mL) was carefully
collected from patients who underwent surgery by para-
centesis of the anterior chamber, using a 27-gauge needle
inserted through the peripheral cornea under a micro-
scope. During paracentesis, the needle was kept away from
touching the iris and lens. All samples were immediately
cooled at − 80 °C and protected from light in a dry place
until they were measured.

Expression profiles of lncRNAs and mRNAs
Using the Agilent-079487 Arraystar Human LncRNA
microarray platform (GPL21827), mRNA and lncRNA

expression data of GSE101727 were obtained from the
publicly available GEO database (http://www.ncbi.nlm.
nih.gov/geo/). The database consisted of the disease-
related extracellular lncRNAs and mRNAs in the aque-
ous humor (AH) of individual POAG patients and the
AH of individual cataracts as the control.

Probe re-annotation
The raw data of GSE101727 only supports the sequence
data format and not the gene symbol. Thus, using the
software of perl (https://www.perl.org/; version 5.30.0),
the sequence data format was converted to the FASTA
format first. The human genome and related annotation
file were obtained from the GENCODE database
(https://www.gencodegenes.org). Then, the sequence
alignment methods were used via NCBI-blast software
(version 2.7.1). Subsequently, the probeMatrix file was
converted to the gene symbol matrix file, and genes were
classified as protein-coded RNA and lncRNA using the
perl software.

Differential analysis of RNAs
To establish differentially expressed lncRNA and mRNA,
the limma package of the R Software for statistical ana-
lysis was used. This R package was also used to calculate
the log2 fold change (log2 FC) > 1 and the false discovery
rate (FDR). An adjusted P < 0.05 was used as the stand-
ard. The limma and heatmap packages were used to
draw volcano plots and heatmaps, respectively.

Identification of potential ceRNA interactions
Both mRNAs and lncRNAs that were negatively corre-
lated with certain common miRNAs were defined as
candidate ceRNA pairs. The mircode online tool
(http://www.mircode.org/) was used to predict the
lncRNA and miRNA interaction. The putative miRNA-
mRNA interactions were collected from miRDB (http://
mirdb.org/), TargetScan (http://www.targetscan.org/
vert_72/), and miRTarBase (http://mirtarbase.mbc.nctu.
edu.tw/php/index.php) databases. Only miRNA-mRNA
interactions predicted by all three databases were in-
cluded. Thus, all the possible miRNA targets were pre-
dicted using the perl software tool.

Construction of the lncRNA-mediated ceRNA network
The lncRNA-mediated ceRNA network was constructed
on the basis that ceRNA can bind to miRNA through
MREs. This ceRNA network was visualized using Cytos-
cape software (Version 3.6.0) [18]. In this network,
nodes and edges represented biological data in a direct
manner in which each node represented a biological
molecule, and the edges represented interactions be-
tween nodes [19]. LncRNAs, mRNAs, and miRNAs in
the ceRNA network were presented as blue diamonds,
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green ellipses, and red triangles, respectively. In addition,
the topological features of this ceRNA network was cal-
culated by a built-in NetworkAnalyzer tool in Cytoscape
software, including betweenness, network degree, and
closeness centrality [20]. These topological parameters
are standard measures of centrality in a network. Be-
tweenness centrality was calculated as the number of
shortest paths between all pairs of nodes in the network
that passed through the node. The degree centrality was
calculated as the number of edges linked to a node. The
closeness centrality of a node was the shortest path
between a node and other nodes [20]. To compare the
differences in the degree, closeness, and betweenness
centrality among lncRNAs, miRNAs, and mRNAs, the
Kruskal–Wallis test was used.

Gene ontology and KEGG pathway analysis
For the Gene Ontology (GO) and the Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway-enrichment ana-
lysis, the clusterProfilerGO and clusterProfilerKEGG
packages of the R Software were used. P < 0.05 was used
as the cutoff criterion.

Results
Data set acquisition and identification of differentially
expressed RNAs
From the GEO database, 10 AH samples from POAG
patients and 10 AH samples from cataract patients were
collected. After selecting the pre-treated data based on
the adjusted P < 0.05 and log2 FC > 1 change, between
the 10 patients’ samples and the 10 control samples, a
total of 4130 differentially expressed RNAs were identi-
fied. Among them, 1041 were lncRNA (508 up- and 533
down-regulated), and 3089 were mRNA (2135 up- and
954 down-regulated). Volcano plots of all differentially
expressed genes were generated (Fig. 1). The heat maps
of lncRNAs, mRNAs, and all RNAs showed the differ-
ences between POAG patients and the control group
(Fig. 1).

ceRNA network construction and analysis
The differentially expressed lncRNAs established were
selected using the miRcode online tool, and the potential
predicted target miRNAs were compared. Then, the re-
lationships between differentially expressed mRNAs and
miRNAs were also evaluated by the miRTarBase,
MiRDB, and Targetscan databases. Finally, 248 POAG-
specific lncRNAs that putatively targeted 37 POAG-
specific miRNAs and the comparisons of 37 POAG-
specific miRNAs and 178 POAG -specific mRNAs were
involved in the ceRNA network. As displayed in Fig. 2,
37 miRNA nodes, 248 lncRNA nodes, 178 mRNA nodes,
and 1985 edges comprised the lncRNA–miRNA–mRNA
network. The topological features of this ceRNA network

were assessed by a built-in NetworkAnalyzer tool in
Cytoscape software, including betweenness, network de-
gree, and closeness centrality. Generally, the nodes in the
ceRNA network with a higher degree, closeness, and be-
tweenness centrality demonstrated a higher possibility of
hub nodes in the ceRNA network. A Venn diagram for
the overlapping top 40 genes with topological features in
each dimension was created (Table 1, Fig. 3d). Finally,
nine miRNAs (hsa-miR-20b-5p, hsa-miR-761, hsa-miR-
17-5p, hsa-miR-338-3p, hsa-miR-24-3p, hsa-miR-125b-5p,
hsa-miR-3619-5p, hsa-miR-129-5p, and hsa-miR-27a) and
four lncRNAs (DNAJC27-AS1, AF121898, OIP5-AS1, and
SNX29P2) were established as hub RNAs in the ceRNA
network. When comparing the differences in the degree,
closeness, and betweenness centrality among lncRNAs,
miRNAs, and mRNAs, the result showed that lncRNAs
and miRNAs had a higher degree, closeness, and between-
ness centrality than mRNAs (Fig. 3), indicating that
lncRNAs and miRNAs tended to be pivotal to the risk of
POAG.

Functional annotation of the ceRNA network
To achieve a more thorough understanding of the
mRNAs’ function in the ceRNA network, a GO and a
KEGG analysis were performed using R software. The
functional assay showed that 18 GO terms and 17 path-
ways were enriched. For the GO analysis, POAG was
significantly enriched in ubiquitin-like protein ligase
binding, ubiquitin protein ligase binding, transcription
factor activity, etc. The KEGG-enriched analysis results
indicated that major pathways, including the mitogen-
activated protein kinase (MAPK) signaling pathway,
endocytosis pathway, and Wnt signaling pathway, were
involved in these mRNAs. The results of the GO and
KEGG enriched analyses are displayed in Fig. 4.

Discussion
POAG is a multifactorial disorder with various etiologies
that is estimated to occur in about 52 million patients in
2020 around the world [8]. During the last few years,
considerable efforts have been made to investigate the
molecular mechanisms of POAG [21, 22]; however, most
previous studies have mainly focused on protein-coding
genes or miRNAs but not on lncRNAs [21–23].
It has been reported that more than 10,000 lncRNAs

are produced by human genomes; however, to date, little
information related to lncRNAs, especially their func-
tion, have been established [24, 25]. Recently, lncRNA
has been found to be involved in some important regula-
tory processes, including transcriptional interference,
transcriptional activation, and chromatin modification,
and it may serve as a biomarker for various diseases,
such as lung cancer [26], colorectal cancer [27], diabetes
mellitus [28], and liver fibrosis [29]. Nevertheless, few
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studies have reported the role of lncRNA in the patho-
genesis of POAG. Thus, the identification of lncRNA in
the pathogenesis of POAG is necessary.
The newly emerged ceRNA hypothesis has been sug-

gested as an innovative post-transcriptional regulatory
mechanism of gene expression. Under this ceRNA net-
work, the lncRNAs and mRNAs are connected by their
common target miRNAs [30]. In recent years, several
studies have explored the underlying molecular mecha-
nisms based on the ceRNA network in some diseases,
such as breast cancer [31], ischemic stroke [32], and
rheumatoid arthritis [33]. To identify lncRNAs signifi-
cantly associated with POAG, in this study, the mRNA
and lncRNA expression profiles of POAG patients were

first used and combined with miRNA-target interactions
to create a ceRNA network and to investigate the poten-
tial implications of these lncRNAs in the development of
POAG.
In this study, four lncRNAs (DNAJC27-AS1, AF121898,

OIP5-AS1, and SNX29P2) served as the hub nodes finally.
In addition, the GO and KEGG pathway analyses were
used to assess enriched biological functions. The differen-
tially expressed mRNA in the lncRNA–miRNA–mRNA
ceRNA network-related GO analysis showed that
ubiquitin-like protein ligase, ubiquitin protein ligase, and
others could play an important role in the development of
POAG. The pathway analysis further revealed that 17
unique pathways were enriched, including the MAPK

Fig. 1 The differentially expressed RNAs in POAG. log2FC > 1, false discovery rate (FDR) < 0.05. a Heatmap plots of differentially expressed RNAs.
b Heatmap plots of differentially expressed lncRNAs. c Heatmap plots of differentially expressed mRNAs. The horizontal axis represents samples.
The vertical axis represents RNAs. d Volcano plot of differentially expressed RNAs in POAG
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signaling pathway, endocytosis pathway, and Wnt signal-
ing pathway. In fact, an increasing amount of experimen-
tal evidence has indicated that these enriched pathways
have always been involved in glaucoma. For example,
Beit-Yannai et al. [34] found that AH in a rat model of in-
duced elevated IOP expressed several signaling members
of the MAPK family; they suggested that MAPKs present
in the aqueous humor are a novel signal involved in glau-
coma pathology. In addition, another study showed that
the MAPK signal pathway participates in protecting hu-
man trabecular meshwork cells from pressure-induced
apoptosis [35]. Webber et al. [36] reported that Wnt

signaling pathways play important roles in the regulation
of TM homeostasis and IOP [37]. Thus, the enrichment
results could suggest that the lncRNA–miRNA–mRNA
ceRNA network plays an important role, by way of these
pathways, in the development of POAG.
Hub nodes, which have been examined in some stud-

ies and are characterized by their high degree of con-
nectivity to other nodes in the ceRNA network, can be
used as topological properties of the ceRNA network to
assess the significance of genes [38, 39]. In the present
study, four lncRNAs (DNAJC27-AS1, AF121898, OIP5-
AS1, and SNX29P2) were observed to be topological

Fig. 2 Overview of the lncRNA–miRNA–mRNA ceRNA network related with POAG. The blue diamonds, red triangles, and green ellipses nodes
represented lncRNAs, miRNAs and mRNAs respectively. Blue lines represented interactions between the RNAs

Zhou et al. BMC Ophthalmology          (2020) 20:104 Page 5 of 9



hub nodes whose betweenness, network degree, and
closeness centrality were significantly higher in compari-
son with other lncRNAs. Thus far, among these hub
lncRNAs, DNAJC27-AS1, AF121898, and SNX29P2 have
not been reported in any study. OIP5-AS1 is an anti-
sense lncRNA that has been reported to play a critical
role in various disorders, including oral squamous cell
carcinoma [40], gastric cancer [41], cardiovascular dis-
ease [42], and multiple sclerosis [43]. Li and colleague’s
study revealed that OIP5-AS1 could promote the pro-
gression of oral squamous cell carcinoma by regulating
the miR-338-3p/NRP1 axis [40]. Another study has also
indicated an aggressive role of ceRNA to drive migra-
tion, invasion, and proliferation of human hemangioma
endothelial cells via regulating the miR-195-5p/NOB1
axis [44]. In the present study, it was observed that
OIP5-AS1 displayed low-expression, which could com-
pete with miRNAs (hsa-miR-17-5p, hsa-miR-20b-5p,
hsa-miR-761, hsa-miR-3619-5p, hsa-miR-24-3p, hsa-

Table 1 Hub RNAs in the ceRNA network

RNAs Closeness Degree Betweenness

OIP5-AS1 0.48074922 30 0.0343011

SNX29P2 0.47678019 26 0.0305805

DNAJC27-AS1 0.45607108 24 0.0230366

AF121898 0.44724105 24 0.0220339

hsa-miR-17-5p 0.39896373 96 0.1305271

hsa-miR-27a-3p 0.39690722 93 0.1068025

hsa-miR-3619-5p 0.39554795 91 0.0561762

hsa-miR-761 0.39487179 90 0.0518472

hsa-miR-24-3p 0.39352641 88 0.0769798

hsa-miR-129-5p 0.39352641 88 0.1011164

hsa-miR-20b-5p 0.39285714 87 0.0920732

hsa-miR-338-3p 0.38308458 72 0.0416175

hsa-miR-125b-5p 0.38245033 71 0.0625927

Fig. 3 The difference in the betweenness, closeness, and degree centrality among lncRNAs, miRNAs, and mRNAs. a The lncRNA nodes had a significantly
higher betweenness centrality than mRNA nodes in the network. b The lncRNA nodes had a higher closeness centrality than mRNA nodes in the network.
c The lncRNA nodes had a higher degree centrality than mRNA nodes in the network. d The Venn diagram showed the overlap of top 40 genes with
topological features in each dimension
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miR-27a, hsa-miR-338-3p, and hsa-miR-129-5p) to regu-
late target gene expression. These miRNAs interacted
with OIP5-AS1 and have been known to be involved in
glaucoma. For example, Zhao’s study has confirmed that
miR-27a (a target miRNA of OIP5-AS1) has protective
impacts on H2O2-injured human trabecular meshwork
cells, which comprise a common glaucoma cell model
[45]. Another miRNA (miR-17-5p, a target miRNA of
OIP5-AS1) has been found to have the function of regu-
lating the proliferation and apoptosis of human trabecu-
lar meshwork cells in response to oxidative stress [46].
Up to now, the research on OIP5-AS1 in glaucoma is

still blank. The findings of our study show that OIP5-
AS1 may be related to the development of glaucoma via
lncRNA–miRNA–mRNA ceRNA network analysis.
Therefore, the OIP5-AS1/miRNA/mRNA axis may be-
come a hot issue for the study of glaucoma in the future.
Although the findings of this study have important

clinical significance, the limitations should be discussed.
First, the conclusion of this study based on the GEO
database should be verified by other experimental evi-
dence. Second, the precise cellular sources and mecha-
nisms underlying hub genes, such as OIP5-AS1,
DNAJC27-AS1, AF121898, and SNX29P2, in relation to

Fig. 4 Gene ontology (a) and KEGG pathway (b) enriched analysis of the mRNAs in the ceRNA network. Y-axis label represents terms name, and
X-axis label represents gene ratio which is defined as the percentage of target genes per term
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POAG should be further investigated. Third, from the
GEO database, 10 AH samples from POAG patients and
10 AH samples from cataract patients is a relatively
small sample; this is the major drawback when perform-
ing genetic studies of association. Thus, the conclusion
and the results of this study should be interpreted with
caution.

Conclusions
In summary, during this study, a POAG-related lncRNA–
miRNA–mRNA ceRNA network was constructed, and hub
lncRNAs, such as OIP5-AS1, DNAJC27-AS1, AF121898,
and SNX29P2, were identified in the development of POAG,
which provided novel insights into exploring the underlying
mechanism of POAG. Further experimental studies should
be performed to elucidate the molecular mechanisms under-
lying the lncRNA function in POAG.
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