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Biologically active pigment and ShlA

cytolysin of Serratia marcescens induce
autophagy in a human ocular surface cell
line
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Abstract

Background: The cellular process of autophagy is essential for maintaining the health of ocular tissue.
Dysregulation of autophagy is associated with several ocular diseases including keratoconus and macular
degeneration. It is known that autophagy can be used to respond to microbial infections and that certain microbes
can exploit the autophagic process to their benefit. In this study, a genetic approach was used to identify surface-
associated and secreted products generated by the opportunistic pathogen Serratia marcescens involved in
activation of autophagy.

Methods: A recombinant human corneal limbal epithelial cell line expressing a LC3-GFP fusion protein was
challenged with normalized secretomes from wild-type and mutant S. marcescens derivatives. LC3-GFP fluorescence
patterns were used to assess the ability of wild-type and mutant bacteria to influence autophagy. Purified
prodigiosin was obtained from stationary phase bacteria and used to challenge ocular cells.

Results: Mutations in the global regulators eepR and gumB genes highly reduced the ability of the bacteria to
activate autophagy in corneal cells. This effect was further narrowed down to the secreted cytolysin ShlA and the
biologically active pigment prodigiosin. Purified prodigiosin and ShlA from Escherichia coli further supported the
role of these factors in activating autophagy in human corneal cells. Additional genetic data indicate a role for
flagellin and type I pili, but not the nuclease, S-layer protein, or serratamolide biosurfactant in activation of
autophagy.

Conclusions: This work identifies specific bacterial components that activate autophagy and give insight into
potential host-pathogen interactions or compounds that can be used to therapeutically manipulate autophagy.
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Fimbriae
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Background
Cells use autophagy to eliminate waste products such as
damaged organelles and proteins in order to enhance
survival during periods of starvation. Autophagy dysreg-
ulation has been linked to many diseases including those
of the eye [1–7]. Therefore therapeutic control of au-
tophagy has been suggested for treatment of cancer,
metabolic diseases, neurodegenerative disorders, for
management of cardiovascular aging, and even for treat-
ment of corneal infections [8–10].
The role of autophagy in the cornea is less well under-

stood, but it is clear that autophagy plays a role in HSV-
1 infection and keratoconus [3, 5, 11]. A recent study
measured activation of autophagy in mouse corneas fol-
lowing infection with the fungus Aspergillus fumigatus
and positively correlated autophagy with the severity of
infectious pathology [12]. Similarly, data from a study
using the bacterium Pseudomonas aeruginosa, suggest
that it benefits from activating autophagy as a means of
escaping extracellular killing in macrophages [13]. How-
ever, in general, activation of autophagy is thought to
protect cells from microbial infection [14, 15]. It is
known that a few bacterial proteins such as TlpE from
P. aeruginosa, bacterial macrolide, rapamycin, TLR-
ligands, and proinflammatory cytokines can activate au-
tophagy [15–17], but knowledge of the scope of infec-
tious components that activate autophagy is limited [15].
Table 1 Bacteria and plasmids used in this study

Strain or plasmid Description

Top10 E. coli laboratory strain

PIC3611 Serratia marcescens wild-type s

K904 S. marcescens keratitis isolate

CMS1722 PIC3611 with pMQ262 (L-arabin

CMS2096 PIC3611 ΔpigA

CMS2097 PIC3611 ΔeepR

CMS2229 K904 pigD::tn

CMS2232 K904 swrW::tn

CMS2904 K904 ΔeepR

CMS3559 K904 nucA::tn

CMS3900 K904 fliC::pMQ192

CMS4001 K904 ΔgumB

CMS4225 K904 fimC::pMQ167

CMS4236 K904 ΔshlB

CMS4334 K904 shlA::tn

CMS4413 K904 ΔslaA

CMS4773 K904 ΔshlB pigE::tn

Plasmids

pMQ125 expression vector with L-arabin

pMQ492 pMQ125 with shlBA operon fro
Our previous work has demonstrated that sterile cul-
ture filtrates (secretomes) of a number of ocular patho-
gens can activate autophagy in a human corneal limbal
epithelial cell line [18], impede cell migration and wound
closure [19], and cause cellular death in a bacterial-
strain dependent manner [20, 21]. These included secre-
tomes gram positive bacteria such as Staphylococcus
aureus and gram negative bacteria including Serratia
marcescens [18]. The secreted or shed bacterial compo-
nents detected by the corneal cells that activate autoph-
agy were not determined. In this study we took
advantage of our collection of S. marcescens defined mu-
tants to identify bacterial factors that induce autophagy
in corneal cells.

Methods
Analysis of autophagy induced by keratitis isolates
Bacterial stocks (Table 1) were stored at − 80 °C and sin-
gle colonies were obtained on lysogeny broth (LB) agar.
Colonies were grown in LB at 30 °C for ~ 18 h with aer-
ation on tissue culture rollers. Where noted, bacteria
were grown with L-arabinose at 1 mM for controlled ex-
pression of genes. Secretomes were prepared by normal-
izing overnight cultures to OD600 = 2.0, removal of
bacteria by centrifugation at 14,000 rpm and filtration
through a 0.22 μm filter (Millex PVDF). Normalized
secretomes were added to HCLE cells at a ratio of 500 μl
Reference or source

ThermoFisher

train Presque Isle Cultures

[22]

ose inducible pig) [23]

[24]

[25]

This study

[26]

[25]

This study

[27]

[28]

[27]

[20]

[20]

[29]

This study

ose inducible promoter [30]

m S. marcescens [20]
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per 1 ml of tissue culture medium (KSFM) and incu-
bated at 37 °C + 5% CO2 for 3 h. In some cases secre-
tomes were further diluted 2-fold (OD600 = 1.0) due to
excessive cytotoxicity as noted in the text. The autoph-
agy inhibitor 3-methyladenine (3MA) was added to cul-
ture media at 5 mM, one hour prior to challenge with
secretomes as previously described [18, 31].
To analyze autophagy, LC3-GFP HCLE cells [18] were

imaged with 60X magnification on an Olympus IX-81
inverted confocal microscope with Fluoview imaging
software. The LC3-GFP cells were generated by lentiviral
transduction of the human corneal limbal epithelial cell
line from Ilene Gipson [32]. Image J (NIH) was used to
quantify images without any image adjustment. Autoph-
agy levels were quantified following recommendations of
Klionsky et al. [33] in which the standard deviation of
fluorescent pixel intensity of a cell is divided by its mean
pixel intensity of the cell. Two to three fields per treat-
ment condition were imaged. The experiment was re-
peated on at least two different days and at least 50 cells
were analyzed per group. The data was averaged from all
fields taken per experiment and graphed using GraphPad
prism. One way ANOVA with Tukey’s post hoc analysis
was used to determine statistical significance at P < 0.05
unless otherwise stated.

Generation of new mutants strains
Additional mutants (Table 1) were generated by trans-
poson mutagenesis using the pSC189 mariner transposon
delivery system as previously described [34, 35]. Transpo-
sons were mapped using the method of Chiang, et al. [34]
To identify nuclease defective mutants, libraries of mu-
tants were transferred from 96-well plates to DNase detec-
tion agar (BD Difco) and plates were screened for loss of
nuclease zones after 16–20 h of incubation at 30 °C
around individual colonies. The transposon was mapped
to 89 bp upstream of the nucA open reading frame and re-
sults in an almost complete loss of secreted nuclease activ-
ity (data not shown). Mutations in the prodigiosin
biosynthetic operon were obtained by visually screening
mutant libraries of strain K904 and K904 ΔshlB for loss of
pigment. Transposon insertions were mapped to base pair
2451 in the K904 strain background and to base pair 1075
of pigE in the ΔshlB strain background.

Purification of prodigiosin
Wild-type strain PIC3611 and an isogenic ΔpigA strain
were grown overnight in LB broth with aeration. The
ΔpigA mutant does not make prodigiosin and served as
a negative control. Bacteria were adjusted to OD600 = 4,
aliquots (5 ml) were pelleted by centrifugation (7000
RPM for 10min), and supernatants were removed. To
extract prodigiosin, bacterial cells were suspended in
100 μl of acidified ethanol (2 ml of 2M HCl in 98 ml of
95% ethanol) and incubated for one hour with periodic
vortexing. Samples were further purified with hydroxy-
apatite resin. Columns were packed with hydroxyapatite
resin (BioRad #16260), equilibrated with acidified etha-
nol, and samples were run through the columns with
acidified ethanol. The mock purification sample from
the ΔpigA culture was collected at the same time as
the prodigiosin fraction from the wild type was col-
lected. Samples were air-dried and prodigiosin con-
centration was determined using a standard curve of
absorbance at 534 nm using commercial prodigiosin
as a standard (Sigma). The same volume of prodigio-
sin was added from the wild type and ΔpigA-derived
samples.

Results
S. marcescens secretome induction of autophagy is
inhibited by 3-methyladenine
Our previous study showed that a subset of ocular bacter-
ial pathogens induced autophagy in a corneal cell line, and
that among the strongest induction was observed with S.
marcescens [18]. In this study, we set out to determine
which components of S. marcescens using wild-type and
genetically manipulated strains induced formation of LC3-
GFP puncta. We used two S. marcescens strains: strain
PIC3611 from Presque Isle Culture collection, a laboratory
strain that is likely from an environmental source (biotype
TCT), and K904, a contact lens associated keratitis isolate
(biotype A6a). Two strains were used to determine
whether phenotypes were associated with one particular
strain or a more general phenomenon.
Figure 1 demonstrates activation of autophagy fol-

lowing exposure of HCLE LC3-GFP cells to normal-
ized filtered supernatants (secretomes) from strain
PIC3611 Fig. 1a, b). The formation of LC3-GFP
puncta indicate cells with activated autophagy and
can be used in quantification of autophagy [33]. Au-
tophagy stimulation by PIC3611 secretomes could be
prevented using autophagy inhibitor 3-methyladenine
(3MA), supporting that the observed LC3-GFP pheno-
type is autophagy dependent (Fig. 1). The same trend
was previously shown for strain K904 and with the
use of autophagy inhibitor baflomycin [18]. As an
additional control to show that LC3-GFP puncta are
not an artifact of fluorescent bacterial components, an
HCLE-GFP cell line with no LC3 fusion was used
[18]. Following PIC3611 supernatant treatment, no
fluorescent focus formation was observed from the
GFP control cell line (Fig. 1c).

S. marcescens secondary metabolite regulators are
necessary for activation of autophagy
The component(s) of the secretome responsible for au-
tophagy induction is unknown. Our previous study



Fig. 1 Induction of autophagy in a corneal cell line by S. marcescens. a. Activation of autophagy by secretome of wild-type strain PIC3611 that
can be reversed by addition of autophagy inhibitor 3-methyladenine (3MA). Representative confocal images of HCLE LC3-GFP cells exposed to LB
medium (mock), secretome from PIC3611, or secretome with autophagy inhibitor. White arrow indicates LC3-GFP puncta and scale bar = 50 μm.
b. Autophagy levels were measured using LC3-GFP patterns. Averages and standard deviations are shown, n > 50 cells per group. Asterisks
denote significant differences using ANOVA with Tukey’s post-test (p < 0.05). c. Representative confocal images of HCLE-GFP cells showing no
puncta after being exposed to PIC3611 secretomes
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demonstrated that secretomes could be heated at 95 °C
and still induce autophagy [18]. Well-defined S. marces-
cens strains with deletion mutations in the eepR and
gumB genes were tested for loss of autophagy induction
because these genes have a conserved and broad impact
on S. marcescens biology [20, 24, 25, 28, 36]. The EepR
and GumB genes regulate expression of multiple se-
creted factors including heat-stable secondary metabo-
lites such as the biologically active pigment prodigiosin
and the hemolytic and antimicrobial biosurfactant serra-
tamolide. Both the eepR and gumB mutants were defect-
ive in activation of autophagy (Fig. 2a).
Additionally, secretomes from strains with mutations
in a variety of surface or secreted proteins regulated by
EepR and/or GumB were individually tested in the K904
strain background (Figs. 2b and 3). These include the
type 1 pilus gene, fimC, the flagellin gene, fliC, the se-
creted nuclease gene, nucA, the prodigiosin biosynthetic
gene, pigD, the cytolysin, shlA, the outer membrane cy-
tolysin transporter gene shlB, the S-layer protein gene,
slaA, and the serratamolide biosynthetic gene, swrW.
Mutant analysis suggested that the eepR and gumB mu-

tants share a defect in autophagy induction with a subset
of the mutants (Figs. 2b and 3), most notably pigD, which



Fig. 2 a. Activation of autophagy by S. marcescens secretomes. Images of LC3-GFP puncta in HCLE cells treated with secretomes. OD600 = *0.5
secretomes used in the shown experiment. Scale bar = 50 μm. b. Activation of autophagy by secretomes from various isogenic mutants in the
K904 strain background. Scale bar = 50 μm

Fig. 3 S. marcescens mutants unable to secrete prodigiosin pigment
or ShlA cytolysin are defective in inducing autophagy. Activation of
autophagy by wild-type secretome (K904) and isogenic mutants or
mock (LB medium). Asterisks denote significant differences from
wild-type strain K904 using ANOVA with Tukey’s post-test (p < 0.05).
Averages and standard deviations are shown, n > 50 cells per group
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codes for a gene involved in prodigiosin pigment biosyn-
thesis [37]. Both eepR and gumB are severely defective in
prodigiosin production due to reduced transcription of
the prodigiosin biosynthetic genes, implicating prodigiosin
as a stimulatory factor [25, 28]. Secretomes from mutants
unable to make type 1 pili, flagella, and cytolysin / cytoly-
sin transporter (shlA and shlB, respectively) were also de-
fective, but to a lesser extent then the pigment mutants.

Prodigiosin is necessary and sufficient to induce
autophagy in a corneal cell line
Given that the prodigiosin defective mutants, eepR,
gumB, and pigD were defective in inducing autophagy
whether they were from the PIC3611 (Fig. 2a) or K904
background (Figs. 2a, b and 3), we analyzed whether
prodigiosin played a role in inducing autophagy in the
HCLE LC3-GFP cell line in greater depth. First, because
the eepR mutation confers pleiotropic effects, we com-
pared the wild-type strain PIC3611 with an isogenic mu-
tant unable to make PigA, which is required for
prodigiosin biosynthesis. Similar to the eepR mutant,
when only pigment biosynthesis was ablated through de-
letion of the pigA gene, strain PIC3611 was unable to in-
duce autophagy (Fig. 4a).



Fig. 4 Prodigiosin biosynthetic genes are necessary for maximal autophagy induction by S. marcescens strain PIC3611. a. The pigA pigment
biosynthetic gene is required for strain PIC3611 to induce autophagy and is defective to a similar level as the eepR mutant. b. Image of cultures
of S. marcescens strain PIC3611 or PIC3611 with pMQ262 grown for 18 h without or with L-arabinose (1 mM), which activates prodigiosin
biosynthetic gene transcription. Prodigiosin pigment is visible as orange to red coloration. c. Confocal images of LC3-GFP puncta activated by WT
(PIC3611) + pMQ262 secretomes that had been grown with arabinose. d. Analysis of autophagy demonstrates a requirement for prodigiosin
biosynthetic genes. Asterisks denote significant differences from the PIC3611 ΔpigA mutant using ANOVA with Tukey’s post-test (p < 0.05).
Averages and standard deviations are shown, n > 50 cells per group
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We have previously described the use of plasmid
pMQ262, which replaces the normal pigment biosyn-
thetic promoter with an arabinose inducible promoter
[26, 38], such that prodigiosin pigment biosynthesis is
dependent upon arabinose in the growth medium (Fig.
4b). When secretomes from strain PIC3611 with
pMQ262 were used to challenge HCLE LC3-GFP cells,
the ability to activate autophagy correlated with arabin-
ose induction of pigment production (Fig. 4c). Arabin-
ose, itself, did not induce autophagy (data not shown).
These data suggest that prodigiosin is necessary for S.
marcescens secretomes to fully activate autophagy in
corneal cells.
To test whether prodigiosin was sufficient for activa-

tion of autophagy in HCLE LC3-GFP cell line, we puri-
fied prodigiosin from strain PIC3611 and mock purified
it from the isogenic ΔpigA mutant, and tested these for
activation of LC3-GFP puncta formation (Fig. 5a-b). Pro-
digiosin from PIC3611 (0.9 μM) was able to activate
autophagy. The negative control mock purified prodigio-
sin from the ΔpigA mutant was unable to activate au-
tophagy when added at the same volume. Similarly,
commercially available prodigiosin could activate au-
tophagy in a dose dependent manner (Fig. 5a, c).

Analysis of the ShlA cytolysin in inducing autophagy from
corneal cells
Data from genetic analysis above suggested that the pore
forming cytolysin, ShlA, contributes to autophagy induc-
tion (Figs. 2b and 3). The ShlB protein is necessary for
secretion of ShlA, such that shlB mutants do not secrete
ShlA [39]. Consistently, the tested shlB mutant behaved
similarly to the shlA mutant (Fig. 2b, and Fig. 3). We
generated a double mutant that is unable to make prodi-
giosin or secrete ShlA (ΔshlB pigD), and this was indis-
tinguishable from the pigD mutant, but had a trend to
lower levels of autophagy induction compared to the
ΔshlB levels.



Fig. 5 Prodigiosin is sufficient to induce autophagy in the corneal HCLE LC3-GFP cell line. a. Confocal images of HCLE LC3-GFP cells challenged
with prodigiosin from wild-type PIC3611, the ΔpigA mutant, or from a commercial source (1 mM). b. Autophagy activation by WT PIC3611
secretome and prodigiosin purified from the WT but not isogenic ΔpigA mutant. c. Commercially available prodigiosin induces autophagy.
Asterisks denote significant differences from Mock groups using ANOVA with Tukey’s post-test (p < 0.05). Averages and standard deviations are
shown, n > 50 cells per group
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Our previous study detected moderate activation of
autophagy by a clinical keratitis isolate of E. coli in
HCLE-GFP cells [18] and that E. coli with a shlBA plas-
mid (pMQ492) is able to secrete functional ShlA cytoly-
sin [20]. Here, we observed that ectopic expression of
the S. marcescens shlBA operon increased the ability of
E. coli secretomes to induce autophagy in HCLE LC3-
GFP cells (Fig. 6). Together, these results indicate a role
for the ShlA cytolysin in activation of autophagy.

Discussion
Several studies have explored the role of ocular autoph-
agy with HSV-1, Toxoplasma gondii, and fungal spp. [2,
3, 5] However, the role of ocular autophagy in response
to bacterial pathogens remains poorly understood.
This study demonstrated that two strains of S. marces-

cens from different biotypes were capable of activating
autophagy in a corneal cell line and identified bacterial
factors capable of activating autophagy. Mutations in
two different genes that confer major pleiotropic effects
on S. marcescens behavior, eepR and gumB, prevented
bacterial activation of autophagy. The eepR gene is a
transcription factor that is required for wild-type levels
bacterial proliferation in a rabbit keratitis model as well
as positive regulation of secondary metabolites such as
prodigiosin and serratamolide [24, 25]. The gumB gene
codes for a stress response signal transmitting protein
that positively regulates prodigiosin and serratamolide,
and is necessary for production of the ShlA, ShlB, and
flagellin [20, 28]. We therefore tested individual genes
controlled by EepR and GumB and identified several
bacterial factors that activate autophagy.
Our genetic and biochemical results indicate that prodi-

giosin can activate autophagy in the tested human corneal
cell line. Prodigiosin, 2-methyl-3-pentyl-6-methoxyprodi-
ginine, is thought to contribute to bacterial competition,
and has antitumor capabilities [37, 40, 41]. Furthermore,
prodigiosin was recently shown to activate autophagic cell
death in a variety of cancer cell lines and to reduce tumor
proliferation in mouse tracheas [42–49]. Many clinical iso-
lates of S. marcescens do not synthesize prodigiosin [50],
and perhaps this benefits them by reducing activation of
the host’s innate immune response.
Beyond prodigiosin, data from this study implicated the

ShlA cytolysin in activation of autophagy in corneal cells.
Similarly, in an elegant study by the Véscovi group, the
pore forming cytolysin ShlA was demonstrated to induce
autophagy in Chinese hamster ovary (CHO) cells [51].
In contrast to our work that suggested a role for flagel-

lin as an autophagy inducer, Di Venanzio showed that S.
marcescens with mutations in fliA and flhD, which
should be defective in flagella production, were able to
activate autophagy in CHO cells [51]. These differences
may be due to the specific bacterial strain background



Fig. 6 Expression of S. marcescens cytolysin operon in E. coli elevates
its ability to activate autophagy by corneal cells. Confocal images (a)
and LC3-GFP quantitation (b) of E. coli laboratory strain Top10 with a
vector control (pMQ125) or a plasmid with shlBA (pMQ492).
Averages and standard deviations are shown, n > 50 cells per group.
Asterisk indicates significant difference by Student’s T-test (p < 0.05)
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or use of CHO cells versus corneal cells. However, con-
sistent with our finding, data from a recent papers using
Salmonella, implicated flagellin as an activator of au-
tophagy in zebrafish and murine RAW cells [52, 53]. To
our knowledge there is no previous information on fim-
briae / type I pili in activation of autophagy. It is also
formally possible that some of the increase in LC3-GFP
puncta results from a reduction in autophagic flux lead-
ing to the increase in overall autophagosomes. The im-
pact of these bacterial factors on autophagic flux will be
tested in subsequent studies.

Conclusions
We have identified S. marcescens activators of autoph-
agy. Whereas prodigiosin and ShlA from S. marcescens
have been previously implicated in activating autophagy,
this report is the first to demonstrate this with ocular
derived cells. The ability of flagellin and fimbria to in-
duce autophagy will need to be further validated using
biochemical means, but this report identifies these bac-
terial factors as potential microbial mediators of autoph-
agy in corneal cells. Since S. marcescens is most
commonly associated with the eye as a contact lens asso-
ciated pathogen, it is possible that corneal cells prime
themselves for microbial infection through sensing pro-
digiosin, flagellin, fimbriae, and ShlA toxins.
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