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Abstract

Background: We aimed to identify metabolic biomarkers and investigate the metabolic alterations in relation to
primary open-angle glaucoma (POAG) and cataract in human aqueous humor.

Methods: Sixteen POAG patients undergoing surgical treatments and 24 patients undergoing cataract surgeries
were included in this case-control study. We performed the metabolomic analysis of aqueous humor samples using
a non-targeted gas chromatography coupled to time-of-flight mass spectrometer. The area under the receiver
operating characteristic curve (AUC) was computed to assess the discrimination capacities of each metabolite
marker. Databases including the Kyoto Encyclopedia of Genes and Genomes (KEGG) and MetaboAnalyst were
utilized to search for the potential pathways of metabolites.

Results: Aqueous humor metabolomic profiles could well distinguish POAG from controls. Fourteen metabolic
biomarkers were identified as potential aqueous humor biomarkers for POAG, yielding AUC values from 0.62 to
0.86. In pathway analysis, Biotin metabolism was highly impacted, implying that these metabolic markers play
important roles in the regulation of this pathway.

Conclusions: This study identified valuable metabolic biomarkers and pathways that may facilitate an improved
understanding of the POAG pathogenesis. The finding holds translational value in the development of new
therapeutic measures for POAG.
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Background
Primary open-angle glaucoma (POAG) is the most common
subtype of glaucoma and the major cause of irreversible
blindness throughout the world [1]. Although numerous
studies have identified several important ocular risk factors
for POAG such as increased intraocular pressure (IOP) [2,

3], myopic refractive errors [4], larger optic disc size [5, 6]
and thinner central corneal thickness [7, 8], these findings
are limited in understanding the pathophysiology of POAG.
Further knowledge regarding the pathophysiology might help
to create new drug development research lines and expand
current therapeutic targets for POAG. In current clinical
practice, the treatment strategy of POAG mainly relies on
IOP-lowering medications or surgeries. Although increased
IOP is widely accepted to be the primary predictor for
POAG, glaucomatous neuropathy is still observed in some
patients with normal or even lower-than-normal IOPs, sug-
gesting that other mechanisms exist in the pathophysiology
of POAG.
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Metabolomics is a widely used technology to assess
biomarkers for diseases and provide molecular informa-
tion regarding disease phenotype since metabolites are
the ultimate product of gene, mRNA and protein activ-
ities [9]. Variations in the metabolome represent the
interplay of genetic and environmental factors and are in
relation to disease states, which may shed some lights in
mechanism and pathophysiology of the disease [10].
With regard to eye diseases, metabolomics has been suc-
cessfully used in identifying the metabolic signatures of
diabetic retinopathy [11]. However, there were less stud-
ies focusing on POAG, especially in human participants.
A previous analysis comparing plasma metabolic signa-
tures as measured by mass spectrometry observed sig-
nificant differences in some specific metabolic processes
such as palmitoylcarnitine, sphingolipids, vitamin D-
related compounds, and steroid precursors between
POAG patients and healthy controls [12]. These differ-
ences observed in metabolome might be linked to mito-
chondrial dysfunction and energy metabolism changes
[12]. However, we believe that aqueous humor samples
are more sensitive to detect biomarkers in glaucomatous
eyes, which may provide novel insights into more new
pathogenic pathways for this ocular condition. To the
best of our knowledge, few studies have focused on the
aqueous humor metabolite markers of POAG in human
beings. To address this gap, we performed a clinical-
based case-control study and aimed to identify novel
metabolite markers of POAG in human aqueous humor
samples.

Methods
Study design and participants
A clinical-based case-control study was conducted on
patients in two tertiary hospitals in China including the
First Affiliated Hospital of Kunming Medical University
and the First Affiliated Hospital with Nanjing Medical
University. Two ophthalmologists (Qin Chen and Hua
Zhong) collected aqueous humor samples during the
surgical treatment in consecutive samples of 40 POAG
and 40 cataract patients (20 cases and 20 controls in
each hospital). Considering that no sample size calcula-
tion rationales are available for metabonomic study at
current stage, the sample size was determined based on
previous published literatures on metabonomic studies
of aqueous humor samples as well as our available re-
sources. In this study, cases were POAG participants
who undertook surgical treatment and were free of cata-
ract. POAG patients were considered to be free of cata-
ract if the nuclear opalescence or nuclear color was less
than 4, the cortical cataract score was less than 2, and
the posterior subcapsular cataract score was less than 2
in the affected eye based on the Lens Opacities Classifi-
cation System (LOCS) III [13]. Controls were

participants who undertook cataract surgeries. The sam-
ples of aqueous humor (at least 20 μL) were extracted
for each participant during the surgical treatment for
both cases and controls. Aqueous humor samples were
stored in a freezer at the temperatures of − 80 °C imme-
diately after it was extracted during the surgical
treatment.
The study was conducted following the tenets of the

Helsinki Declaration and was approved by the Institu-
tional Review Board of the Kunming Medical University.
All patients included in the study provided written in-
formed consent for aqueous humor samples to be
extracted.

Metabonomic profiling and data processing
First, derivatization of the samples was performed ac-
cording to the protocols reported in a previous study
[14]. Then, all samples were analyzed by gas chromato-
graph system coupled with a Pegasus HT time-of-flight
mass spectrometer (GC-TOF-MS). GC-TOF-MS
analysis was performed using an Agilent 7890 gas chro-
matograph system coupled with a Pegasus HT time-of-
flight mass spectrometer. A 1 μL aliquot of the analyte
was injected in a splitless mode. Helium was used as the
carrier gas, the front inlet purge flow was 3 mL per mi-
nute, and the gas flow rate through the column was 1
mL per minute. The initial temperature was kept at
50 °C for 1 min, then raised to 310 °C at a rate of 20 °C
per min and was kept for 6 min at 310 °C. The injection,
transfer line, and ion source temperatures were 280 °C,
280 °C, and 250 °C, respectively.
Chroma TOF 4.3X software was used for raw peaks

exacting, data baselines filtering and calibration of the
baseline, peak alignment, deconvolution analysis, peak
identification and integration of the peak area. Mass
spectrum match and retention index match were consid-
ered in metabolites identification. We removed peaks
detected in less than 50% of quality control (QC) sam-
ples or relative standard deviation (RSD) more than 30%
in QC samples.

Statistical analyses
First of all, peaks could be left through interquartile
range denoising method. Then the missing values of raw
data were filled up by half of the minimum value. A
multivariate analysis was performed using the
SIMCA14.1 software package (V14.1, Sartorius Stedim
Data Analytics AB, Umea, Sweden). An unsupervised
model of principal component analysis (PCA) with unit
variance scaling was applied to show the distribution of
origin data [15]. In order to obtain a higher level of
group separation and get a better understanding of vari-
ables responsible for classification, supervised orthogonal
projections to latent structures-discriminate analysis
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(OPLS-DA) were applied [16]. To refine this analysis,
the first principal component of variable importance in
the projection (VIP) was obtained. The VIP values ex-
ceeding 1 were first selected as changed metabolites. In
addition, these selected metabolites were further vali-
dated at a critical P value of 0.05 using two sided stu-
dent’s t-test. The area under the receiver operating
characteristic curve (AUC) was computed to assess the
discrimination capacities of each metabolite marker. Da-
tabases including the Kyoto Encyclopedia of Genes and
Genomes (KEGG) [17] (http://www.genome.jp/kegg/)
and MetaboAnalyst [18](http://www.metaboanalyst.ca/)
were utilized to search for the pathways of metabolites.

Results
Characteristics of the participants
In the end of the study, 16 patients with POAG (40%)
undergoing surgical treatments and 24 patients (60%)
undergoing cataract surgeries from the two hospitals
provided written informed consent for their aqueous
humor samples to be taken for research purpose. Thus,
the ratio for cases vs. controls was 1:1.5. The mean age
was 72.5 years in participants with POAG (cases) and
74.2 years in participants with cataract (controls) and the
difference was not statistically significant (P = 0.13).
Women accounted for 54% of the study sample in cases

and 62% in controls. No preoperative medications were
used for all participants.

Aqueous humor metabolic profiles
The PCA score plot showed that the QC samples were
tightly clustered, supporting the robustness of the meta-
bolic profiling platform (data not shown). The super-
vised OPLS-DA model was established to understand
the holistic metabolic differences between POAG pa-
tients and controls. As shown in the OPLS-DA score
plot, excellent separation between POAG patients and
controls could be achieved (Fig. 1). The validation plot
strongly supported the validity of the model, as all per-
muted R2 and Q2 values on the left were lower than the
original points on the right (Fig. 2).

Identification of potential biomarkers
Following the successful establishment of the OPLS-DA
model, potential metabolic biomarkers were selected using
the criteria of VIP or more than 1.0 and P value of less than
0.05. Finally, 14 metabolites were successfully selected and
identified as potential biomarkers of POAG compared with
controls (Table 1). Compared with controls, 6 metabolites
were found to be decreased in those with POAG compared
with cataract, including Biotin, Glucose-1-phosphate,
Methylmalonic acid, N-cyclohexylformamide 1, Sorbitol, and

Fig. 1 PLS-DA score plots for discriminating primary open-angle glaucoma and controls
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Fig. 2 Validation plots for the OPLS-DA model

Table 1 Potential metabolic biomarkers identified for primary open-angle glaucoma in aqueous humor samples

ID Metabolite VIP P value Up/Down Regulation AUC

1 Glucose-1-phosphate 1.57 0.04 Down 0.64

2 Methylmalonic acid 1.16 0.04 Down 0.68

3 Spermidine 2 1.43 0.19 Down 0.69

4 N-cyclohexylformamide 1 1.57 0.01 Down 0.73

5 Sorbitol 1.67 0.02 Down 0.74

6 Biotin 1.13 0.05 Down 0.67

7 Pelargonic acid 1.02 0.01 Up 0.75

8 2-mercaptoethanesulfonic acid 2 2.67 < 0.001 Up 0.83

9 Galactose 1 3.01 < 0.001 Up 0.86

10 Mannose 1 2.43 < 0.001 Up 0.80

11 D-erythronolactone 2 1.27 0.05 Up 0.62

12 Dehydroascorbic Acid 2 2.77 < 0.001 Up 0.86

13 Ribitol 2.49 < 0.001 Up 0.78

14 D-Talose 1 3.26 < 0.001 Up 0.85

VIP Variable importance in the projection; AUC Area under the receiver operating characteristic curve
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Spermidine 2. In contrast, 8 metabolites, including 2-
mercaptoethanesulfonic acid 2, D-erythronolactone 2, D-
Talose 1, Dehydroascorbic Acid 2, Galactose 1, Mannose 1,
Pelargonic acid and Ribitol, were found to be increased in
participants with POAG compared with controls (Fig. 3).
Those metabolite markers showed the potential to discrimin-
ate between POAG and controls, with AUC values ranging
from 0.62 to 0.86 (Table 1).

Pathway analysis for potential biomarkers
Pathway analysis, including enrichment analysis and
pathway topology analysis, was further performed to
understand the metabolic pathways that these potential

biomarkers are involved in. A total of 5 pathways were
significantly enriched at the significance level of 0.10,
namely Biotin metabolism; Beta-Alanine metabolism;
Glutathione metabolism; Folate biosynthesis; and Argin-
ine and Proline metabolism (Fig. 4). Especially, Biotin
metabolism was highly impacted, implying that these
metabolic markers play important roles in the regulation
of this pathway.

Discussion
In clinical practice, POAG remains a poorly understood
condition with limited therapeutic options. Therefore,
there is a pressing need to develop personalized

Fig. 3 A heatmap showing the concentrations of 14 metabolite markers between primary open-angle glaucoma and controls (1: primary open-
angle glaucoma, 2: controls)

Fig. 4 Enrichment analysis and pathway topology analysis for potential metabolic biomarkers of primary open-angle glaucoma
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approach to guide clinical management. In this study,
we systematically explored the metabolic differences in
aqueous humor samples between patients with POAG
and controls of patients with cataract. We identified
fourteen metabolites as possible biomarkers in aqueous
humor samples that had the potentials to distinguish
POAG patients from controls. The identification of
novel metabolite markers for POAG in human aqueous
humor provides insights into potential new pathogenic
pathways for this vision-threatening condition and could
potentially lead to new drug development research lines.
Previous animal and human studies have provided

some preliminary results on metabolites associated with
glaucoma. For example, an experimental study found
that metabolites in relation to osmotic stress, oxidative
stress and glucose metabolism were related to the retinal
ganglion cell death in rats, which is regarded as the com-
mon mechanism for glaucoma [19]. Another mouse
model of chronic glaucoma identified unique profiles of
sphingolipid and ceramide species between normoten-
sive and hypertensive aqueous humor and found that
sphingosine- and sphinganine-1-phosphates greatly in-
creased in hypertensive mice [20]. With regard to the
studies on humans, an untargeted plasma metabolomic
study observed increased levels of palmitoylcarnitine;
putatively-identified sphingosine, sphinganine, and de-
creased levels of sphingosine-1-phosphate in patients
with POAG [12]. To the best of our knowledge, few
studies have explored the POAG-associated metabolites
in human aqueous humor samples. The analysis of me-
tabolites in human aqueous humor may reveal novel po-
tential biomarkers of POAG with greater sensitivity and
specificity which might be detected in blood samples.
We identified 14 metabolite markers in human aqueous
humor which might potentially distinguish POAG from
cataract. We also searched public databases such as
KEGG [17] and MetaboAnalyst [18] and other published
literatures, trying to find possible metabolic pathways for
POAG observed in this study.
We found that Biotin metabolism was highly impacted

in the pathway analysis, implying that Biotin may play
major roles in POAG pathophysiology. Biotin was re-
ported be oxidized into the retina [21]. It was also indi-
cated that in vivo administration of biotin to early
embryonic chick eyes at moderately elevated levels in-
duced malformations, mainly affecting lens structures
[22]. As the controls in this study were patients under-
going cataract surgeries whose lens structures might
have been malformed compared with cases free of cata-
ract, it is reasonable that the levels of Biotin is lowers in
POAG patients observed in this study.
The phenomenon that Methylmalonic acid was re-

duced in POAG patients compared with controls prob-
ably suggested increased oxidative damage may play a

major pathophysiological role in POAG [23].. Methylma-
lonic acid was reported to be able to provoke oxidative
damage and compromise antioxidant defenses in nerve
terminal and striatum [24]. According to the results of a
recent meta-analysis including 22 case-control studies
with 1614 with glaucoma and 1319 healthy controls,
some biomarkers increased in glaucomatous aqueous
humor such as superoxide dismutase and glutathione
peroxidase. In addition, high levels of Methylmalonic
acid were also found to increase the risk of optic neur-
opathy [25–27].
The level of Ribitol in aqueous humor was found to be

higher in POAG compared with cataract in our study.
Increased level of Ribitol was reported to play a role in
prevention of cataract formation and act as a cofactor
for glutathione reductase, which is linked to cataract for-
mation by decreased glutathione levels in the lenses. On
the other hand, Ribitol deficiency is implicated in the
formation of cataracts due to the concentration of re-
duced glutathione in the lens and its ability to protect
the tissue from oxidative damage [28]. Thus, our finding
is consistent with previous studies.
The level of Sorbitol was expected to be lower in

POAG patients as compared with those with cataract. It
is well established that diabetes is a major risk factor
cataract [29]. Sorbitol is a key marker in osmotic stress.
Lens fiber cell resulting from excessive accumulation of
sorbitol has been proposed as a possible mechanism in
cataract formation in diabetic patients. A previous study
reported a strong relationship between the abundance of
polyol pathway metabolites sorbitol and blood glucose
levels in lenses extracted from diabetic patients [30].
Mannose was found to be increased in POAG patients

compared with cataracts. Mannose is a simple sugar but
have a complex health effect on different parts of the
body including the eyes. A previous study have indicated
that an upregulation of the lectin pathway-associated
mannose-serine-protease-2 was observed in the optic
nerves of the optic nerve homogenate antigen group
[31], which supports the finding in the current study.
We have to acknowledge some limitations of this

study. One major limitation was the small sample size,
which may have prevented changes in certain metabo-
lites from being apparent. In addition, some sources of
bias such as differences in the time of day of sample
collection may have distorted the findings. Particularly,
intake of drugs such as IOP-lowering medications in pa-
tients with POAG may have potentially altered the me-
tabolome distributions. However, it is unlikely to control
the effect of IOP-lowering medications between cases
and controls in this study. Furthermore, the control
group was patients undergoing cataract surgery rather
than “healthy” individuals, and the selection of control
group might have distorted the findings as cataract
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should have its own distinct metabolic profiling which
should be different from POAG. It is ideal if we could
obtain aqueous humor samples in healthy people with-
out eye diseases. Finally, metabolic pathways of some
metabolites identified in this study could not be founded
in public databases or published literatures. Whether
they are true biomarkers for POAG warrants further
clarifications.

Conclusions
This study investigated the metabolic markers associated
with POAG in human aqueous humor samples. As a re-
sult, 14 metabolites were identified as potential bio-
markers that could discriminate between patients with
POAG and controls. Biotin metabolism was highly im-
pacted in pathway analysis and may play important roles
in the regulation of this pathway. Overall, this study pro-
vided new clues in the disease pathogenesis of POAG.
Validation of the results is warranted in other studies.
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