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Abstract

Background: To investigate the expression and significance of mechanistic target of rapamycin complex
1(MTORCT) in diabetic retinopathy (DR), and to find new targets and new methods for the treatment of DR.

Methods: A DR rat model was prepared by general feeding combined with intraperitoneal injection of 10%
streptozotocin (60 mg/kg). The rats were randomly divided into a control group (NDM group) and a diabetes group
(DM group). Three months later, the degrees of retinopathy was determined using hematoxylin and eosin staining,
and the levels of p-S6, VEGF, and PEDF proteins were detected by immunohistochemistry and western blotting.
Human retinal capillary endothelial cells (HRCECs) were cultured in high glucose (HG) conditions, then treated with
rapamycin or transfected with siTSC1.The protein levels of p-S6 were assessed by western blotting. The 5-ethynyl-2"-
deoxyuridine assay was used to detect cell proliferation, and the Transwell assay was used to detect cell migration.

Results: A DM rat model was successfully developed. The expressions of p-S6 and VEGF proteins were significantly
increased in the DM group (p < 0.05), and the expression of PEDF protein was significantly decreased compared
with the NDM group (p < 0.05). In vitro, the p-S6 protein, as well as cell proliferation and migration, in HG induced
HRCECs were increased (p < 0.05) compared with the control (normal glucose) group (p < 0.05). After transfection
with siTSC1 to activate mTORCI, the expression of p-S6, as well as cell proliferation and migration, were increased.

compared to the control group (p < 0.05).

In contrast, rapamycin decreased p-56 expression, as well as proliferation and migration, in HG induced HRCECs

Conclusion: mTORC1 plays an important role in DR. After activation, mTORC1 induced expression of the p-S6
protein, regulated the expressions of VEGF and PEDF proteins, and changed the proliferation and migration of
endothelial cells. The mTORC1 can therefore be used as a new target,as well as in the treatment of DR.
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Background

Diabetic retinopathy (DR), which is a microvascular
complication of diabetes mellitus (DM), is the most
common retinal vascular disease, and is one of the major
blinding eye diseases for patients over 50 years of age
[1]. However, the present treatment options for DR are
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limited [2]. Studies have confirmed that the destruction
of pancreatic beta-cells in a high glucose (HG) environ-
ment leads to DM [3]. The retina is in a HG environ-
ment for a long time, which leads to the destruction of
the blood-retinal barrier, and induction of excessive pro-
duction of pro-inflammatory cytokines, such as TNF-a,
and IL-1B [4], which stimulate excessive production of
reactive oxygen species in the mitochondrial electron
transfer chain, to cause oxidative stress and to limit the
production of energy [5], resulting in the inhibition of
cell autophagy [6]. This series of processes eventually
leads to retinopathy [7], promoting the release of a large
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number of cytokines [8], which leads to the occurrence
of DR.

The mammalian target of rapamycin (mTOR) is a
highly conserved serine/threonine protein kinase in
structure and function, involving mTORC1, and is a
central signaling molecule that integrates various path-
ways inside and outside cells, regulates cell growth and
metabolism, and provides an important molecular link
between nutritional signals and metabolic processes
necessary for cell growth. It mainly promotes cell
growth, proliferation and differentiation by activating
key anabolic processes. Improper regulation of mTORC1
is the basis of many human diseases, including cancer,
diabetes, autoimmune diseases, and nervous system
diseases [9]. Several recent studies have demonstrated
that mTOR may play a vital role in DR pathophysiology.
The research by Calton and Vollrath proved that inhib-
ition of mTOR reduced migration of retinal pigment
epithelial cells [10]. Fort and colleagues found that
mTORCI1 caused an independent reduction of retinal
protein synthesis in type 1 diabetes. However, the effect
of mTORC]1 activation on DR development has not been
reported [11]. The roles of mTORC]1 in aberrant endo-
thelial cell proliferation and migration, and the crucial
events in DR progression, as well as its underlying mech-
anisms, are not known.

In the present study, the rat DR model and the human
retinal capillary endothelial cells (HRCECs) HG model
were constructed. To determine the role of the mTORC1
signaling pathway in the pathogenesis of DR, as well as to
find new targets and methods of treatment for this dis-
order, we first measured the expression level of mTORC1
downstream phospo-S6 ribosomal protein (p-S6). We
thenanalyzed its relationship with the expression level of
vascular endothelial growth factor (VEGF) and recombin-
ant human pigment epithelium-derived factor (PEDE),
and characterized retinal proliferation and migration.

Methods

Animals

Healthy male SPF SD rats, weighing 200 + 20 g(n = 12),
were obtained from the Animal Laboratory Center,
Southern Medical University [license No. SCXK (Guang-
dong, China) 2016—-0041]. All experimental animals were
fed and followed-up in the animal room of the Medical
Research Center of the Third Affiliated Hospital of
Southern Medical University. The experimental proto-
cols were approved by the Animal Ethics Committee of
Southern Medical University.

Diabetes induction

The rats were randomly divided into a non-diabetes melli-
tus (NDM) group and diabetes mellitus (DM) group. After
adaptive feeding for 3days, the DM group(n =6) was
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injected intraperitoneally with 10% streptozotocin (STZ)
at a dose of 60 mg/kg body weight, STZ was dissolved in a
citric acid-sodium citrate buffer solution of 0.1 mmol/L
and pH of 4.4, which was protected from light and placed
on ice [12, 13]. The NDM group(n = 6) received the same
dose of citric acid-sodium citrate buffer. In the DM model
rats, animals with blood sugar >16.7 mmol/L were used
for tail venous blood tests. All animals were euthanized at
3months by intraperitoneal injection of pentobarbital
sodium, and their blood samples and retinas were
harvested for protein preparation, and the eye balls were
removed for paraffin sections.

Major reagents

STZ, citric acid, and sodium citrate (Sigma-Aldrich, St.
Louis, MO, USA), anti-VEGF mouse monoclonal antibody
(Abcam, Cambridge, MA, USA),1:3000 [14, 15], anti-PEDF
rabbit polyclonal antibody (ABclonal, Wuhan, China),1:
3000,anti-PS6 rabbit monoclonal antibody (Ser235/236;
Cell Signaling Technology, Danvers, MA, USA)1:1500 [16],
anti-S6 rabbit polyclonal antibody (Cell Signaling Technol-
ogy),1:5000 [17], anti p-tubulin mouse monoclonal anti-
body (Beijing Kangwei Century Biotechnology, Beijing,
China;1:5000), anti-mouse secondary antibody and anti-
rabbit secondary antibody (Beijing Ruikang Biotechnology,
Beijing, China;1:3000), Endothelial Cell Medium (ECM;
Sciencell, Carlsbad, CA, USA), and rapamycin (APExBIO;
Boston, MA, USA) were used in this study.

Trypsin digest preparation of retinal vasculature

Retinal vasculature was prepared according to the proto-
col written by Jonathan C. Chou [18] Briefly, the eyeballs
were enucleated and fixed in 4% paraformaldehyde for
24h. The retinas were dissected from the eyeballs,
washed in water overnight, and digested in 3% trypsin
(Solarbio, Beijing, China) for 2h at 37°C. The tissues
were repeatedly washed in water to remove debris, trans-
fered onto clean slides and unfolded under a dissection
microscope, stained with hematoxylin & eosin (Solarbio,
Beijing, China) after natural drying, then dehydrated and
mounted. The prepared retinal vessels were photo-
graphed by microscope and 5 pictures were selected
from each group. The number of endothelial cells and
pericytes from images were counted and the ratio(E/P)
was calculated to assess the degree of retinopathy.

Cell culture

HRCECs were from Guangzhou Jennio Biotechnology
(Guangzhou, China) and were cultured in media supple-
mented with 1% endothelial cell growth supplement, 1%
penicillin/streptomycin solution, and 5% fetal bovine
serum (FBS) at 37 °C, and were incubated in a humidi-
fied incubator with 5% CO,. When HRCECs reached
80-90% confluence, they were digested with 0.25%
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trypsin without EDTA and passed at a ratio of 1:2. The
concentration of glucose in the ECM was 1g/L (5.5
mmol/L), which was similar to the normal blood glucose
concentration of the human body. HRCECs were
cultured in the same normal glucose concentration as
the control group (NG group). D-(+)- glucose was added
to the ECM, and the final concentration of glucose was
adjusted to 4.5 g/L (25 mmol/L) to simulate the diabetic
microenvironment of the human body, which was used
to develop a HRCEC HG model (HG group) [19]. The
final concentration of rapamycin (inhibitor of the
mTORCI1 pathway) in HG-ECM used to treat HRCECs
was 50 nM (HG + rapamycin). Cells treated under differ-
ent conditions were placed in a constant temperature in-
cubator for culturing, and the medium was changed
every day for subsequent protein extractions.

Transfection

The siTSCI (sense, 5'-CCAAAUCUCAGCCCGCUUUTT-
3" and antisense, 5'-AAAGCGGGCUGAGAUUUGGTT-
3") were purchased from Sangon Biotech (Shanghai, China).
They were separately transfected into HRCECs using Lipo-
fectamine 3000 reagent (Life Technologies, Carlsbad, CA,
USA) according to the manufacturer’s instructions.

Transwell assay

After HRCECs were treated with different interventions for
48h, 1x10° cells/mL were diluted with serum-free ECM
and transferred into the upper chamber of a Transwell in-
sert (Corning, Corning, NY, USA). ECM containing 5%
FBS was added to the lower chamber. After 24 h of incuba-
tion in a CO, incubator at 37 °C, the non-migrating cells
were gently removed from the upper chamber. Cells that
had migrated through the membrane were fixed with 4%
paraformaldehyde for 20min and stained with a 0.5%
Crystal Violet solution for 10 min. The migrated cells were
imaged using an inverted optical microscope, and five fields
of view were randomly selected to count cell numbers.

5-ethynyl-2'-deoxyuridine (EdU) assay

HRCECs were inoculated into 15mm glass-bottomed
dishes. After becoming adherent and reaching 60-70%
confluency after 6h, they were separately treated with
different interventions. After 48 h of treatment, the cell
proliferative capacity was assayed with a kFluor488-EdU
assay kit (KeyGen, Nanjing, China) according to the manu-
facturer’s instructions. Samples were incubated with 50 uM
EdU working solution for 2 h. The cells were then imaged
using a fluorescence microscope. Five fields of view were
randomly selected to calculate the positive rate.

Statistical method
All experiments were performed in triplicate and observed
by independent observations. SPSS statistical software for
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Windows, version 19.0 (SPSS, Chicago, IL, USA) was used
for statistical analysis. The experimental data are expressed
as the average number + standard deviation (x + s). Each test
sample was provided with two secondary wells. The t-test
was used for comparison between two groups. The differ-
ence was statistically significant with a value of p < 0.05.

Results

Establishment of a diabetic rat model

In the NDM group, the blood glucose level of rats was
always<16.7 mmol/L. Before eating and drinking the same
amount, the rats gradually gained weight and had clean
and shiny fur. After 1 week, the blood glucose levels of the
DM group rats were all >16.7 mmol/L. The blood glucose
level of the DM group rats was significantly increased, the
intake of food was increased, and the amount of drinking
water was increased, with approximately twice that of the
healthy rats. However, weight gain was not obvious in DM
rats within 3 months, and several even lost weight, with
sallow fur and bent backs (Fig. 1a).

In NDM rat retinas, the structures of each layer were clear
and distinct after hematoxylin and eosin staining. In the DM
group, the structure of the retinal layers was disordered, the
inner limiting membrane was swollen, dilated blood vessels
could be seen in the ganglion cell layer, and more blood ves-
sels could be seen in the outer plexiform layer (Fig. 1b).

As showed in the retinal vasculature, the nucleuses of
endothelial cells were big, oval or irregular which paralleled
with the vasculature in long axis (Fig. 1c, white arrow); the
nucleuses of pericytes were small and round, being triangle,
located at one side of the capillary (Fig. 1c, black arrow). In
DM rat, the ratio of the number of endothelial cells to the
number of pericytes(E/P) was significantly increased com-
pared with NDM rat(p<0.0001, Fig. 1c).NDM rat showed
normal vascular architecture, while diabetic rat retinas
exhibited increased acellular capillaries (Fig. 1c, triangle).

mTORC1 was highly activated in retinas of diabetic rats
when compared with nondiabetic rats

Rats were euthanized 12 weeks after successful modeling,
and retinal tissues were obtained. We next determined
whether mTOR was activated in diabetic rats compared
with non-diabetic rats. Immunofluorescence analysis
revealed significantly upregulated phosphorylation of S6
(S235/236; a downstream effector of mTORC1 and
S6K1) expression in retinas of diabetic rats, when
compared with non-diabetic rats (Fig. 2a). We also
found that VEGF was highly expressed in the retinas of
diabetic rats, while PEDF was significantly decreased in
the retinas of diabetic rats, when compared with non-
diabetic rats (Fig. 2b, c). These results were confirmed
by western blotting (Fig. 2d). Together, these results
showed that mTOR signaling, mTORCL1 in particular,
was highly activated in retinas of diabetic rats.
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Fig. 1 The successful establishment of a retinopathy model in streptozotocin-induced diabetic rats. a Random blood glucose levels and body
weights of rats. b Hematoxylin and eosin staining of retinal paraffin sections (200x). NDM, non-diabetes mellitus; DM, diabetes mellitus. ¢ The
prepared retinal vasculature by trypsin digest (400x). Endothelial cell (white arrow), pericyte (black arrow), and acellular capillaries (triangle)

.

Rapamycin inhibited the proliferation and migration of
HG induced HRCECs

Western blotting showed that the p-S6 contents were
higher in HG-HRCECs than the NG group (Fig. 3a). In
HG-HRCECs transfected with siTSC1, the protein con-
tents of p-S6 were higher than the HG control, and after

treatment with rapamycin, the p-S6 contents were
decreased in HG-HRCECs. In the Transwell assay, HG
increased the migration ability of HRCECs, which could
be transfected with siTSC1. After treatment with rapa-
mycin, the migration ability decreased (Fig. 3b). In the
EdU assay, HG treatment induced a significant increase



Liu et al. BMC Ophthalmology (2020) 20:297

Page 5 of 7

VEGF

DAPI Merge

)
W ON\
PEDF v ‘o
VEGF e e— 0.8
06
P-S6 - e — e
o 04
S6 —— — 02
B-Tubulin “— — 0.0 .- o

PEDF in rat retinas. Values are mean + 95%Cl.

“p <0.0001

Fig. 2 mTORC1 is highly activated in retinas of diabetic rats. a Retinal immunofluorescence staining of p-S6 protein. b The retinal
immunofluorescence staining of VEGF protein. ¢ Retinal immunofluorescence staining of PEDF protein. d The protein contents of p-S6, VEGF, and

DAPI Merge PEDF DAPI Merge

e
w

VEGF / B-Tubulin
o
@

PEDF / B-Tubulin
°
N

e

0.2

0. T 0. T
NDM DM NDM DM

in the proliferation of HRCECs compared with the NG
group, while treatment with rapamycin inhibited HG-
induced proliferation (Fig. 3c).

Discussion

mTOR was first discovered by Heirman and others when
analyzing the difference of resistance of beer yeast mutants
to rapamycin [20]. The mTOR is a serine/threonine
protein kinase,which is highly conserved in structure and
function, belonging to a phosphatidylinositol 3-kinase
(PI3K)-related family member [21]. mTOR mainly exists in
the form of two complexes in vivo: mTORCI, which
regulates cell proliferation and metabolic reactions and
mTORC2. Abnormalities in any link can change mTORC1
activity [22], leading to the development of diseases, such
as diabetes, cancer, and aging [23]. At present, a large
number of studies have confirmed that the PI3K/Akt/
mTOR signaling pathway is related to some complications
of diabetes, such as diabetic nephropathy [24], neuropathy
[25], and myocardial ischemia [26]. We therefore suspected
that the occurrence and development of DR was related to
mTORC]1 activation. The mTORCI1 is mainly composed of
mTORC (core protein), RAPTOR (scaffold protein), DEP-
TOR (endogenous kinase inhibitor), PRAS40 (endogenous
kinase inhibitor), and mLST8 [27]. There is a dephosphor-
ylated S6K downstream of the mTORC1 pathway, which is
located on the elF3 scaffold complex. Active mTORC]1 is
recruited onto the elF3 scaffold and then phosphorylates
S6K to activate it [28]. The mTORCI1 phosphorylates at
least two amino acid residues of S6K1, of which the most
critical modification is located on the threonine residue
(T389) [29].S6K1 activity can be determined by activating

S6 ribosomal protein (phospo-S6 ribosomal protein, p-S6)
and elF4B, and the level of P-S6 in the body can be used as
an indicator of the activation degree of the mTORC1
pathway [30].

In the present study, we used a STZ -induced rat model,
which is frequently used for studies on diabetes and its
complications. We found that the retinal structures of DM
rats were more disordered than NDM rats, and that there
were more blood vessels in the retinas of DM rats, which
was consistent with the results of other studies. We also
found that p-S6 and VEGF proteins were significantly
increased in the DM group, and the expression of PEDF
protein was significantly decreased compared with the
control group. These results suggested that activation of
the mTORCI pathway may exist in DR. DR involves micro-
angiopathy, and vascular endothelial cells are the primary
cellular targets in DR. Thus, HRCECs were cultured in
ECM with 25 mmol/L glucose to simulate the diabetic
microenvironment. In vitro, the p-S6 protein in HG-
induced HRCECs was increased compared with the control
(normal glucose)group. After transfection with siTSC1 to
activate mTORCI, the expression level of p-S6 was in-
creased, and the processes of proliferation and migration
were increased, whereas rapamycin decreased the p-S6
expression in HG-induced HRCECs, and the processes of
proliferation and migration were also decreased.

In summary, mTORC1 played an important role in
DR. It was activated in DR to produce the p-S6 protein,
to regulate the expressions of VEGF and PEDF proteins,
and to change the proliferation and migration of endo-
thelial cells, which are the main characters of DR devel-
opment. However, it is also clear that in vitro cell line
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expression systems do not fully replicate the vivo cellular
environment. Therefore, future studies in DR rats using
rapamycin will be performed to confirm the effect of
mTORC1 during DR development and to explore the
appropriate therapeutic dose of rapamycin.

Conclusion

mTORC1 may be a new target for the treatment of
diabetic retinopathy, and its specific inhibitors (such as
rapamycin) may also provide a novel means of treatment.
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