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Abstract

Background: This study aimed to establish a deep learning system for detecting the active and inactive phases of
thyroid-associated ophthalmopathy (TAO) using magnetic resonance imaging (MRI). This system could provide
faster, more accurate, and more objective assessments across populations.

Methods: A total of 160 MRI images of patients with TAO, who visited the Ophthalmology Clinic of the Ninth
People’s Hospital, were retrospectively obtained for this study. Of these, 80% were used for training and validation,
and 20% were used for testing. The deep learning system, based on deep convolutional neural network, was
established to distinguish patients with active phase from those with inactive phase. The accuracy, precision,
sensitivity, specificity, F1 score and area under the receiver operating characteristic curve were analyzed. Besides,
visualization method was applied to explain the operation of the networks.

Results: Network A inherited from Visual Geometry Group network. The accuracy, specificity and sensitivity were
0.863±0.055, 0.896±0.042 and 0.750±0.136 respectively. Due to the recurring phenomenon of vanishing gradient
during the training process of network A, we added parts of Residual Neural Network to build network B. After
modification, network B improved the sensitivity (0.821±0.021) while maintaining a good accuracy (0.855±0.018)
and a good specificity (0.865±0.021).

Conclusions: The deep convolutional neural network could automatically detect the activity of TAO from MRI images
with strong robustness, less subjective judgment, and less measurement error. This system could standardize the
diagnostic process and speed up the treatment decision making for TAO.
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Synopsis
The study proposed a method based on deep convolu-
tional neural network to detect the activity of thyroid-
associated ophthalmopathy from orbital magnetic
resonance imaging, with high accuracy, sensitivity and
specificity.

Background
TAO, an autoimmune disease associated with thyroid dis-
ease, is the most common orbital disease in adults. TAO
not only affects the appearance of patients but may also
impair visual function seriously [1]. Two phases in the
development of TAO are generally distinguished: the
active phase and the inactive phase [2]. In the active phase,
patients feel red and painful in eyes because of vasodilata-
tion and inflammatory cell infiltration caused by active
inflammation, and respond well to immunosuppressive
therapy. In the inactive phase, with fibrosis taking place,
patients show painless motility deficit in eyes, and
immunosuppressive therapy is useless [3]. Clinical activity
score (CAS) is a common index of activity staging based
on typical inflammatory manifestations [2]. Without using
special instruments, CAS is easily manageable and
increases the success rate of immunosuppressive therapy.
However, because it is entirely clinical, this index is less
sensitive to disease progression in subclinical patients and
during treatment [4, 5]. Besides, Wang proposed that
because of the differences in orbital anatomy between
Caucasians and Asians, cut-off point for the CAS of Asian
patients might be lower than the standard [6].
MRI is another way to evaluate the activity of TAO.

Orbital MRI can clearly reflect the structure and path-
ology of the orbit, with no ionizing radiation, high con-
trast of soft tissue, and multi-parameter imaging. The
intraorbital signal intensity of patients with active TAO
was significantly different from that of inactive patients
in several MRI sequences, such as short TI inversion re-
covery sequence (STIR), diffusion tensor imaging, and
dynamic enhancement techniques [5–8]. Politi found
that orbital MRI might be more sensitive than clinical
examinations and could become biomarkers of early
asymptomatic inflammatory [9]. However, the disease-
related information contained in orbital MRI is not fully
deciphered, and film reading is mostly manual reading
in clinical work, which relies on the accumulation of
experience. Therefore, the complex multi-dimensional
information of orbital MRI can only be transformed into
simple and measurable information before it can be
understood and used, such as diameter, signal intensity
and so on. Furthermore, the slight change of signal
intensity caused by mild inflammation is easily over-
looked by ophthalmologists who do not specialize in
TAO. This feature engineering could lead to the loss of
effective information and even misdiagnosis.

In view of the shortcomings above, it is necessary to
develop a sensitive and accurate method for activity sta-
ging of Asian patients, which is not limited to profes-
sional experience. Deep learning, an end-to-end machine
learning method, is not limited by prior knowledge [10].
As one of deep learning, deep convolutional neural net-
work (DCNN), which could extract features automatic-
ally and classify accurately, has been widely used in
medical fields recently, including ophthalmology. There
were researches of DCNNs based on digital retinal pho-
tos and optical coherence tomography conducted to
identify anterior segment disease and fundus disease
[10–20]. However, studies on the recognition of orbital
diseases based on orbital MRI have not been reported.
In this study, a deep learning system based on DCNN

was established to recognize orbital MRI for differentiat-
ing the active phase from the inactive phase in patients
with TAO. In the rest of the paper we introduced the
subject and the database, described the structure of the
network we built and evaluated the performance
through accuracy, precision, sensitivity, specificity, F1
score and area under the receiver operating characteris-
tic curve.

Methods
Patients
This study followed the tenets of the declaration of
Helsinki and was approved by the ethics committee of
Shanghai Ninth Peoples’ Hospital (Approval No. SH9H-
2018-T41–2). Patients who came to the Ophthalmology
Clinic of the Ninth People’s Hospital from May 01,
2018, to July 01, 2019, were retrospectively examined.
The inclusion criteria were as follows: (1) age more than
18 years, (2) meeting the internationally recognized diag-
nostic criteria for TAO, and (3) intraorbital involvement
confirmed by orbital MRI. European Group on Graves’
orbitopathy (EUGOGO) suggested that the severity of
TAO could be divided into mild, moderate, and
extremely severe according to the degree of eyelid
retraction, exophthalmos, diplopia, and other indices [1].
The eyes with higher severity were analyzed in the in-
cluded patients. The exclusion criteria were as follows:
(1) eyelid retraction, exophthalmos, and eye movement
disorders caused by other eye diseases and (2) patients
with metal implants or mental illness. The data types
included basic information of patients, physical examin-
ation, auxiliary examination and treatment suggestion.
Meanwhile, the therapeutic effect and adverse events
were recorded during treatment.
A total of 108 patients were included in this study.

Among patients, there were 66 females and 42 males.
Patients in active phase were treated with immunosup-
pressive therapy. One hundred sixty orbital MRIs were
performed before and after treatment. Due to the lack of
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data and the significant change of MRI signal intensity
before and after treatment, we regarded the data before
and after treatment as independent data.

Data preparation
Acquisition of orbital MRI
MRI scanning was performed on a 3.0-T MRI system
(Philips Ingenia 3.0 T). Throughout the scan, the patient’s
head was stabilized in a supine position and kept stationary.
The orbital MRI imaging protocol included T1-weighted
turbo spin-echo (TSE), T2-weighted TSE spectral presatura-
tion with inversion recovery (SPIR), and T2-weighted driven
equilibrium radiofrequency reset pulse (DRIVE). Axial SPIR
was chosen for the present study (repetition time/echo time
= 3000.0/80.0; number of sample acquisition = 1.6; field of
view = 120 × 150 × 49mm3; slice thickness = 3mm; matrix
= 240 × 226 × 15).

Data annotation
The DCNN used in this study belongs to the supervised
learning method. CAS is the most commonly used clin-
ical staging index of TAO, whose assessment includes 7
clinical manifestations: spontaneous retrobulbar pain,
pain on attempted upward or downward gaze, redness of
eyelids, redness of conjunctiva, swelling of caruncle or
plica, swelling of eyelids and swelling of eyelids. We used
CAS to annotate the activity stage of orbital MRI [5].
Patients with CAS ≥3/7 were annotated as active phase,
while patients with CAS< 3/7 were annotated as inactive
phase. In this study, the activity of TAO was assessed
based on CAS score by two ophthalmologists with more
than 5-year experience in orbital diseases (Xuefei Song
and Lunhao Li). Disagreement, if any, was resolved by a
senior chief physician (Huifang Zhou) after an empir-
ical evaluation of orbital MRI. After annotation, there
were 50 MRI images of active phase and 110 MRI of
inactive phase.

Dataset division
The dataset for testing was generated by a random split
of 20% of the entire set, which didn’t participate in train-
ing process. A 32-image dataset was generated for test-
ing, among which there were 7 MRI images of active
phase and 25 MRI of inactive phase. K-fold cross-
validation was employed to the remaining dataset (train-
ing set) for hyper-parameter tuning (k = 5). This algo-
rithm divided the data into k folds randomly without
replacement. During one cross-validation process, k-1
folds were used for training, and the remaining fold was
used for validation. This process was then repeated k
times to use each of the k folds once for validation. After
finding the satisfactory hyper-parameters through K-fold
cross-validation, A new model was trained from the
whole training set.

Data normalization and augmentation
Intensity nonuniformity in MRI, also known as bias field,
was caused by the location of patients, scanner parame-
ters, and environment. This difference in signal intensity
has nothing to do with anatomical and physiological fac-
tor, which may reduce the comparability of MRI images.
N4 bias field correction was carried out to reduce this
inconsistency [21]. After correction, the pixels of each
image were normalized to an average of 0 and a stand-
ard deviation of 1. Finally, the orbital parts of MRI were
intercepted with ITK-SNAP 3.6.0 and zoomed to 164 ×
164 pixel size [22]. With the optic nerve plane as the
center, five slices of MRI images were chosen.
To avoid overfitting, data enhancement techniques

were used before each training, including random flip-
ping and random crop, after which the size of the MRI
became 128 × 128 × 5 pixels. Figure 1 shows the process
of data preprocessing and data augmentation.

Deep convolutional neural network
The basic DCNN consisted of convolution layer, pooling
layer and fully connected layer. Convolution layer could
extract features by filters. In order to avoid the overfit-
ting by the increase of features after several filters, pool-
ing layer was proposed to subsample and to reduce the
number of parameters. Besides, this layer could retain
the relative invariance of space. After obtaining all the
features, the fully connection layer was used to integrate
them to complete the classification task. In addition to
the basic structure of DCNN, we added nonlinear activa-
tion functions, batch normalization, dropout layer and
softmax function to optimize the network. Rectified
linear unit (ReLU) was applied as nonlinear activation
function after every convolution layer and every fully
connected layer, which could speed up the convergence
by sparse activation. Between the convolution layer and
the activation function, batch normalization was set up
to normalize the distribution of each batch, which could
effectively reduce the phenomenon of gradient dis-
appearance [23]. Dropout layer dropped a part of param-
eters randomly with probability 1-p, which could
prevent overfitting by simplify the network (p=0.5). Soft-
max function, following fully connected layer, could con-
vert the output to a probability distribution. Our
proposed DCNNs inherited parts of Visual Geometry
Group (VGG) network and Residual Neural Network
(ResNet), structures of which are shown in Fig. 2.
Network A inherited VGG network, with small filters
(3× 3) to reduce the complexity. Network A had five
convolutional modules and four full connection layers.
Each convolutional module contained two convolutional
layers and one max pooling layer. On the basis of
network A, network B inherited ResNet, with eight Res-
Block modules to increase the depth and to reduce the
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occurrence of vanishing gradient and exploding gradient.
Each ResBlock contained two convolutional layers and
one residual path. During the training process, Adam
optimizer, learning rate decay, weight decay and mo-
mentum optimization were applied to accelerate the
convergence and to improve training speed [24].
Cross-entropy was selected as the loss function.
Detailed adjustments of hyperparameters are shown
in Table 1. The entire process was carried out on the
machine MECHREVO MR LX980 equipped with
RTX2080, using the Google’s TensorFlow2.0 as the
backend.

Evaluation
The experiment was run four times to evaluate the sta-
bility of training. The convergence of loss value in
training was achieved to evaluate the training process.

The preprocessed image was input into the well-trained
networks, the probability was calculated, and a decision
was output. The average and standard deviation (SD) of
accuracy, precision, sensitivity, specificity and F1 score
of four runs on test set were calculated, the definitions
of which were given by:

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

Precision ¼ TP
TP þ FP

Sensitivity ¼ TP
TP þ FN

Specificity ¼ TN
TN þ FP

Fig. 1 Data preprocessing and data augmentation. Orbital part of the MRI image was captured using ITK-SNAP after normalization and N4 bias
field correction (164, 164, 5). Captured images were augmented by random flipping and crop and entered the neural network (128, 128, 5)
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F1 score ¼ 2� Precision� Sensitivity
Precision þ Sensitivity

F1 score is an index to measure the accuracy of
binary classification model, which conveys the balance
between precision and sensitivity. The effectiveness
was also evaluated by drawing the receiver operating
characteristic (ROC) curve and calculating the area
under curve (AUC).

In addition, it is difficult to tell how neural network
works, so the occlusion testing, a kind of visualization
method, was applied to reveal insights into the decisions
of neural networks. We set gray occlusion region on the
input image, and recorded the output probability while
different regions were occluded. By converting these
probability changes into heat map, the key parts of the
input image for decision could be displayed.

Results
The experiment was run four times on both networks.
The results of accuracy, precision, sensitivity, specificity
and F1 score of each network were summarized in
Table 2, shown as average±SD. Both networks got high
accuracy (network A: 0.863±0.055, network B: 0.855±
0.018) and performed well on other indicators. The SD
of five measures in network B was smaller than that in
network A, which indicated that the training of network
B was more stable. Figure 3 shows the convergence of
loss value during training process and the ROC during
testing process. The loss values of both networks could
nearly converge to 0, in which network A did faster. The
AUC value of both networks was 0.922. Figure 4 shows
the results of occlusion testing by heat map. Each region
was marked with thermal color according to the prob-
ability change caused by its occlusion. High-heat colors
in the images were the key parts for decision, such as
red and yellow. They mainly located on the edematous
extraocular muscles.

Discussion
TAO is the most common orbital disease in adults. Its
clinical staging is the main index to guide treatment.
The existing CAS is entirely clinical, which makes it less
sensitive to disease progression in subclinical patients
and during treatment [5]. Orbital MRI has been used to
assist in clinical staging. The challenges in an MRI-based
clinical application include the selection of sequences,
signal inconsistencies and data protection. T2-weighted
sequence of MRI can reflect the water content of tissue,
so as to distinguish inflammatory edema from fibrous
hyperplasia. In order to reduce the interference of fat
signal, T2-weighted sequence is often combined with fat
suppression technique, such as STIR and SPIR. Higa-
shiyama pointed out that the signal intensity rate of
extraocular muscle in STIR sequence was positively cor-
related with CAS score and was a positive predictor of
treatment response, related to the risk of deterioration
[3, 25]. In this study, SPIR sequence was selected for
training and testing. To reduce signal inconsistencies,
N4 bias field correction was applied. However, MRI film
reading depends on experience and may loss effective in-
formation. Deep learning is not limited by experience
and DCNN could extract features automatically and

Fig. 2 Sketch maps of the networks. Network A, inherited from VGG-
16, consisted of five convolution modules and four full connection
layers. Each module contained two convolution layers (conv) and one
max pooling layer (pool). On the basis of network A, network B added
eight ResBlock modules with two convolution and one residual path
(green line)
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classify accurately, which could standardize the process
of MRI fim reading.
At present, DCNN based on MRI is restricted to the

brain, kidney, prostate and spine. The major technical
problems include difficulty in three-dimensional recon-
struction, overfitting caused by small datasets, and the
“black box” problem [26]. In order to solve the difficulty
in three-dimensional reconstruction of MRI images, we
treated three-dimensional images as stacks of two-
dimensional images in our study. In the face of overfit-
ting caused by small datasets, one of the current
research hotspots is transfer learning. Transfer learning
is a method transferring the knowledge from some pre-
vious tasks to a present target, and is classified to three
types: unsupervised transfer learning, inductive transfer
learning, and transductive transfer learning [27]. Zhang
and Kermany found that transfer learning could speed
up training and reduce redundant processes, with good
performance in small datasets [28, 29]. However, when
the selected source domain was not related to the target
domain, negative transfer may happen, which make it
perform even worse [27]. As orbital MRI images were
similar to each other but not similar to common data-
sets, we chose to inherit parts of VGG and ResNet rather
than transfer learning. Network A inherited VGG net-
work with small filters repeatedly. In this way, the net-
work structure could be simplified, and the task of
binary classification could be completed with good
generalization ability. Due to the recurring phenomenon
of vanishing gradient in the process of training, we

added the ResBlock module of ResNet to build network
B. After transmitting the original input directly to the
following layer by residual path, network B greatly
increased the depth, and reduced the occurrence of van-
ishing gradient and exploding gradient. In addition,
weight decay, learning rate decay, momentum and other
methods were applied to optimize both networks. To
explain how the networks worked, occlusion testing, one
of the most commonly used visualization methods, was
also applied in this study.
The results shown in Table 2 and Fig. 3 indicated that

both networks performed well in four runs. Network A
had better accuracy (0.863) and specificity (0.896), while
network B had good sensitivity (0.821) and was more
stable when training. Both networks had high AUC
(0.922). For such a small dataset, the good performance
suggested that: (1) SPIR sequence of orbital MRI did
contain depth characteristics that reflected the progress
of TAO; (2) this binary classification task was in good
agreement with the system established. The results of
occlusion testing shown in Fig. 4 indicated that the key
parts for decision-making mainly located on the edema-
tous extraocular muscle, which was consistent with our
cognition.
This study was novel in proposing a DCNN-based

deep learning system to stage the activity of TAO. This
deep learning system could avoid subjective error and
explore in-depth information on intraorbital changes,
which could assist ophthalmologists, who do not
specialize in TAO, to evaluate the activity. Furthermore,

Table 1 Detailed adjustments of hyperparameters

Hyperparameters Details

Network A Network B

Depth 10 convolution layers 20 convolution layers

Activation function Rectified linear unit (ReLU)

Loss function Cross-entropy

Filter size 3×3, channels increased from 64 to 128 to 256 to 512, stride was 1 or 2

Batch size 64

Epoch 300 400

Learning rate 3×10−4, decay to 1×10−4 after 250 epoches 3× 10− 4, decay to 5× 10−5 after 300 epoches

Optimizer Adam optimizer (β1=0.9, β2=0.999) with momentum

Batch normalization After every convolution layer

Regularization Weight decay by L2 regularization (λ=0.01 in convolution layer, λ=0.001 in fully connected layer)

Table 2 Evaluation of the networks

Accuracy Precision Sensitivity Specificity F1 score

Network A 0.863 ± 0.055 0.680 ± 0.124 0.750 ± 0.136 0.896 ± 0.042 0.712 ± 0.121

Network B 0.855 ± 0.018 0.640 ± 0.033 0.821 ± 0.071 0.865 ± 0.021 0.719 ± 0.040
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the application of visualization methods may not only
assist the staging of the disease, but also have educa-
tional significance for clinical beginners, such as indicat-
ing swelling and hyperemia of extraocular muscles and
so on. However, this study had several limitations: (1)
Manual interception of the orbital part was costly. This
step will be further automated in the future. (2)
Although regularization methods were applied, it was
still difficult to completely avoid overfitting for such a
small dataset. In further studies, the database should be
expanded to increase the robustness of the system. (3)
We only chose one MRI sequence for decision making,
which may cause bias. Other MRI sequences should be
added to look for new indicators and to further explain
the role of MRI in clinical staging of TAO. Also, medical

imaging data will be combined with treatment and prog-
nosis to establish a sounder intelligent decision-making
system. After finding a solution of data access and data
protection, telemedicine platforms will be used to pro-
mote a new Predictive, Preventive, Personalized, and
Participatory (4P) medical paradigm for the diagnosis
and treatment of TAO.

Conclusions
The orbital MRI contains the depth characteristics of
TAO clinical staging. DCNN doesn’t rely on subject-
ive judgment and could directly get these features
from the orbital MRI to assist the clinical staging of
TAO patients, with small measurement error and
strong robustness. The networks established in this

Fig. 3 a. The convergence of loss value of network A (blue) and network B (green). The point represented the original data, and the line
represented the fitting curve. b. Receiver operating characteristic curve of network A (red) and network B (blue). AUC of both networks was 0.922

Fig. 4 Heatmap of occlusion testing of network A (up) and network B (down). High heat colors, such as red and orange, were the key parts in
orbital MRI for clinical staging of TAO
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study performed well during evaluation process. In
further studies, we will develop its potential for effi-
cacy evaluation and prediction. Through telemedicine
platforms, we could standardize the diagnosis and
treatment of TAO and speed up the decision-making
process in the future.
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