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Abstract 

Purpose: To describe the clinical features, imaging characteristics, and genetic test results associated with a novel 
compound heterozygous mutation of the BEST1 gene in two siblings with autosomal recessive bestrophinopathy.

Methods: Two siblings underwent a complete ophthalmic examination, including dilated fundus examination, 
fundus photography, fundus autofluorescence imaging, spectral-domain optical coherence tomography, fluorescein 
angiography, electroretinography, and electrooculography. A clinical diagnosis of autosomal recessive bestrophi-
nopathy was established based on ocular examination and multimodal retinal imaging. Subsequently, clinical exome 
sequencing consisting of a panel of 6670 genes was carried out to confirm the diagnosis and assess genetic altera-
tions in the protein-coding region of the genome of the patients. The identified mutations were tested in the two 
affected siblings and one of their parents.

Results: Two siblings (a 17-year-old female and a 15-year-old male) presented with reduced visual acuity and bilater-
ally symmetrical subretinal deposits of hyperautofluorescent materials in the posterior pole, which showed staining in 
the late phase of fluorescein angiogram. Spectral-domain optical coherence tomography demonstrated hyperreflec-
tive subretinal deposits and subretinal fluid accumulation. Both patients shared two mutations in the protein-coding 
region of the BEST1 gene, c.103G > A, p.(Glu35Lys) and c.313C > A, p.(Arg105Ser) (a novel disease-causing mutation). 
Sanger sequencing confirmed that the unaffected mother of the proband was carrying p.(Glu35Lys) variant in a het-
erozygous state.

Conclusions: We have identified and described the phenotype of a novel disease-causing mutation 
NM_004183.4:c.313C > A, p.(Arg105Ser) in a heterozygous state along with a previously reported mutation 
NM_004183.4:c.103G > A, p.(Glu35Lys) of the BEST1 gene in two related patients with autosomal recessive 
bestrophinopathy.
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Introduction
The BEST1 (alternatively VMD2, RP50, BMD) gene 
located on chromosome GRCh38 11q12.3 encodes a 
transmembrane pentameric protein consisting of 585 
amino acids with a highly conserved N-terminal region 
followed by four transmembrane domains (amino 
acids 1–390) and a carboxy-terminal region (amino 
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acids 391–585) [1]. Structural models of the BEST1 
propose the N- and C-termini as being cytosolic with 
four transmembrane domains (domains 1, 2, 5, and 6) 
and two cytoplasmic domains (domains 3 and 4) [2, 3]. 
The protein is predominantly expressed in the baso-
lateral plasma membrane of the retinal pigment epi-
thelium (RPE) and functions as a calcium-activated 
chloride channel (CaCC) which regulates the flow of 
chloride and other monovalent anions across cellular 
membranes in response to intracellular calcium levels 
[4–8]. Mutation of the BEST1 gene has been associ-
ated with lipofuscin accumulating within and beneath 
the RPE and degeneration of the RPE and the overlying 
photoreceptors [9]. A wide range of ocular phenotypes 
resulting from mutations in the BEST1 gene have been 
described and are collectively termed bestrophinopa-
thies. [10, 11] Autosomal recessive bestrophinopathy 
(ARB) may result from a total absence (null pheno-
type) of functional BEST1 protein in the RPE, [12, 13] 
improper localization to the cell membrane with intact 
anion channel activity, [14] or lack of the anion channel 
activity [15].

Schatz et al., in 2006, first described a variant of Best 
macular dystrophy in two members of a Swedish fam-
ily presenting with reduced vision, multifocal retinal 
deposits, and intraretinal cystic changes, harboring 
biallelic mutations in the BEST1 gene. [16] In 2008, 
Burgess et al. coined the term autosomal recessive bes-
trophinopathy (ARB) and identified it as the third dis-
tinct phenotype resulting from mutations in the BEST1 
gene. [12] Other described phenotypes associated with 
pathogenic variants of the BEST1 gene include Best 
vitelliform macular dystrophy (BVMD) [17, 18], adult 
vitelliform macular dystrophy (AVMD), autosomal 
dominant vitreoretinochoroidopathy (ADVIRC), [19, 
20] autosomal dominant microcornea, rod-cone dys-
trophy, early-onset cataract, and posterior staphyloma 
(MRCS) [11], rod-cone dystrophy and retinitis pigmen-
tosa [11, 21]. In contrast to other phenotypes of bes-
trophinopathies that result from dominant mutations, 
ARB is associated with recessive biallelic mutations in 
the BEST1 gene [12, 22, 23].

Patients with ARB typically present in the first two 
decades of life but may remain asymptomatic as late as 
the fifth decade [12, 15, 24]. The clinical features of ARB 
include a gradual and progressive visual loss, hypero-
pia, predominantly peri-macular sub-retinal yellow-
ish deposits of lipofuscin, seen as hyperautofluorescent 
areas, accumulation of subretinal and/or intraretinal 
fluid, absence of light peak in electrooculography, nor-
mal or reduced electroretinogram, and sometimes asso-
ciated with shallow anterior chambers and reduced axial 
length predisposing the affected patients to angle-closure 

glaucoma. [12, 25, 26] Full-field electroretinography is 
typically normal early on in the disease and shows abnor-
mal results from late childhood or adolescence, indicat-
ing generalized rod and cone dysfunction. In addition, 
pattern electroretinography evidence of macular dys-
function is also seen. [12] This article presents the results 
of clinical evaluation, multimodal imaging, electrophysi-
ological tests, and genetic investigations of two siblings 
with ARB.

Methods
Clinical investigation
Clinical investigations in patients included a detailed 
history and physical examination, slit-lamp biomicros-
copy, indirect ophthalmoscopy, fundus photography, 
fundus autofluorescence imaging (FAF), optical coher-
ence tomography (OCT), fluorescein angiography (FA), 
full-field electroretinography (ERG), and electrooculog-
raphy (EOG). The ERG and EOG were performed per the 
guidelines of the International Society for Clinical Elec-
trophysiology of Vision (www. iscev. org).

Genetic analysis
Whole exome sequencing

DNA isolation, exome library preparation, and sequenc-
ing DNA was isolated from the patient’s whole blood 
sample using QIAamp DNA Blood Mini Kit (QIAGEN, 
CA, US) and subjected to targeted gene capture using 
MedGenome Clinical Exome (Ver. 4) which captures a 
panel of 6670 protein-coding genes. The libraries thus 
generated were sequenced to mean coverage of > 80-100X 
on the Illumina HiSeq 4000 sequencing platform (Illu-
mina, CA, US). 100% of the protein-coding region of the 
BEST1 gene was covered.

Variant calling and annotation The Genome Analy-
sis Toolkit (GATK) best practices framework was fol-
lowed to identify the variants in the sample using Sen-
tieon (v201808.07). The sequencing reads were aligned 
to the human reference genome (GRCh38.p13) using the 
Sentieon aligner. Sentieon’s version of GATK (IndelRea-
ligner) was used to perform local realignment in regions 
containing potential indels. Sentieon’s version of GATK 
Toolkit – BaseRecalibrator was used to recalibrate the 
quality scores of all the reads [27]. Sentieon DNASeq 
(v201808.07) HaplotypeCaller was used to identify vari-
ants. Gene annotation of the variants was performed 
using the VEP program against the Ensembl release 99 
human gene model [28, 29]. In addition to SNVs and 
small Indels, copy number variants (CNVs) were detected 
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from targeted sequence data using the ExomeDepth 
(v1.1.10) method [30]. Clinically relevant mutations were 
annotated using published variants in literature and a set 
of disease databases—ClinVar [31], OMIM [32] (updated 
on 11th May 2020), GWAS [33], HGMD (v2020.2) [34], 
and SwissVar [35].

Variant filtering and analysis To identify candidate 
variants, we selected the variations if their minor allele 
frequencies are less than 0.05 in 1000 Genome Project 
[36], gnomAD [37], dbSNP [38], Exome Variant Server 
[39], 1000 Japanese Genome [40], and internal Indian 
population database. The identified variations were clas-
sified into pathogenic, likely pathogenic, VUS, likely 
benign, and benign groups according to the variant inter-
pretation guidelines of the American College of Medical 
Genetics and Genomics (ACMG) [41]. Furthermore, all 
nucleotide variants present in BEST1 were reviewed. The 
genes and corresponding variants that qualified these fil-
tering criteria were investigated to determine their sig-
nificance and relevance in Bestrophinopathy. 8.65 Gb of 
raw sequencing data was generated, of which > 88% of 
raw reads passed the on-target alignment. > 90% of the 
targeted base qualified the Phred score Q30.

Sanger sequencing
Sanger sequencing was performed in the proband and 
the mother to validate the variants identified by whole 
exome sequencing and identify the mutation in the 
parent. Sanger sequencing was performed with these 
primers:

F1: 5′-ATC GGT GTC CCT CTC TAC CA-3′, R1: 5′-CTA 
TGT GGG CCT ATG AGT CTG-3′; F2: 5′-CGT CCT GCC 
GTT AGC AAT G-3′, R2: 5′-CAC CTT CAG ACA CCC GAC 
T-3′. The reference sequence NM_004183 of BEST1 was 
used.

Bioinformatics analysis
The potential functional impact of all the candidate vari-
ants was investigated using three programs, including 
PolyPhen2 (http:// genet ics. bwh. harva rd. edu/ pph/, in the 
public domain), Mutation Taster (http:// www. mutat ionta 
ster. org/, in the public domain), and SIFT (http:// sift. jcvi. 
org/, in the public domain).

Results
Clinical findings
Patient A (proband), a 17-year-old female, reported 
blurred distance vision in both eyes for three years. Her 
best-corrected visual acuity was 6/9 in both eyes, which 
did not change during the follow-up of 1 year. Slit-lamp 
examination of the anterior segment of both patients 
was unremarkable. The axial length measured by opti-
cal biometry was 21.80  mm and 21.64  mm in the right 
and the left eye, respectively. Dilated fundus examination 
revealed bilateral and symmetrical, multifocal subretinal 
yellowish deposits in the posterior pole and upper nasal 
region, with peripapillary sparing (Fig.  1A, B). On FAF, 
the yellowish deposits appeared as hyper-autofluores-
cent spots surrounding an area of hypo-autofluorescence 
(Fig.  1C, D). The deposits showed staining in the late 
phase of the fluorescein angiogram (Fig. 1E, F). On OCT, 
subretinal fluid and intraretinal hyporeflective spaces 
(schisis) located predominantly in the outer nuclear layer 
(ONL) were seen along with elongated photoreceptors 
and hyperreflective deposits in the subretinal space bilat-
erally (Fig. 1G, H). The electroretinogram (ERG) was nor-
mal, and an absent light peak was noted on EOG.

Patient B, a 15-year-old male, reported a unilateral 
decrease in visual acuity and inward deviation of the left 
eye since the age of four. On ocular examination, he was 
found to have left esotropia of 15 prism diopters with 
prescribed correction and 25 prism diopters without the 
correction for distance. His best-corrected visual acu-
ity was 6/6 in his right eye and 5/60 in his left eye, with 
an accommodative-convergence over accommodation 
(AC/A) ratio of 2:1. Slit-lamp examination of the ante-
rior segment was unremarkable. The axial length meas-
ured by optical biometry was 21.61  mm and 21.54  mm 
in the right and the left eye, respectively. Dilated fundus 
examination revealed two circumscribed areas of bilater-
ally symmetrical, multifocal subretinal yellowish depos-
its, one in the posterior pole and the other in the upper 
nasal region, with peripapillary sparing. (Fig. 2A, B). The 
yellowish lesions were hyper-autofluorescent surround-
ing an area of hypo-autofluorescence on FAF (Fig.  2C, 
D) and showed staining in the late phase of fluorescein 
angiogram (Fig. 2E, F). On OCT, subretinal fluid (seen as 
subfoveal hyporeflective space), elongated photorecep-
tors along with hyperreflective deposits in the subretinal 

Fig. 1 Clinical features of patient A (proband). A 17-year-old otherwise healthy female presented with blurred distance vision in both eyes, which 
she first noticed when she was 14 years old. Colour fundus photographs (A, B) show bilateral and symmetrical, multifocal subretinal yellowish 
deposits in the posterior pole and upper nasal region, with notable peripapillary sparing. The yellowish deposits are hyperautofluorescent on blue 
light fundus autofluorescence (C, D) and circumscribe areas of hypoautofluorescence. On fluorescein angiography (E, F), the yellowish deposits 
show diffuse staining in the late phase. Horizontal spectral-domain optical coherence tomography images through the right and left fovea (G, H) 
show center-involving subretinal fluid and thickening of the ellipsoid zone, with elongation of the photoreceptor outer segments and deposits in 
the subretinal space. Additionally, intraretinal hyporreflective areas predominantly located in the outer nuclear layer can be seen

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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Fig. 2 Clinical features of patient B. A 15-year-old otherwise healthy male presented with a unilateral decrease in visual acuity and inward deviation 
of the left eye, which was first noticed by his parents when he was four. On colour fundus photographs of the right and the left eye (A, B), two 
separate areas of bilateral and symmetrical, multifocal subretinal yellowish deposits are seen in the posterior pole and upper nasal region, with 
notable peripapillary sparing. On blue light fundus autofluorescence (C, D), the yellowish deposits are hyperautofluorescent, and circumscribed 
areas show hypoautofluorescence. In the late phase of fluorescein angiography (E, F), diffuse staining, seen as diffuse hyperfluorescence of the 
yellowish deposits is observed. Horizontal spectral-domain optical coherence tomography scans through the fovea (G, H) show center-involving 
subretinal fluid and thickening of the ellipsoid zone, with elongation of the photoreceptor outer segments and deposits in the subretinal area
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area were observed bilaterally (Fig. 2G, H). The electro-
retinogram (ERG) was normal, and an absent light peak 
was noted on EOG.

The patients were born of a non-consanguineous mar-
riage from parents of North Indian descent. The par-
ents and unaffected siblings were examined; however, 
no ocular or systemic abnormalities were observed. 
(Fig.  3). Both affected siblings were treated with topical 
carbonic anhydrase inhibitors and followed up for one 
year. The subfoveal fluid did not improve after one year of 
treatment. The clinical, imaging, and electrophysiologi-
cal findings of the affected patients are summarized in 
Table 1.

Genetic findings
A heterozygous missense mutation, NM_004183.4(BEST1): 
c.103G > A, was found in exon 2 of the BEST1 gene in 
both patients (chr11: g.61951909G > A; c.103G > A) and 
was further validated by Sanger sequencing (Fig.  4A). 

It resulted in the amino acid substitution of Glutamic 
acid (negatively charged) for Lysine (positively charged) 
at codon 35, NM_004183.4:p.(Glu35Lys) (Table  2). The 
variant is classified as likely pathogenic in the ClinVar 
database [31] and lies in the RFP-TM, chloride channel 
domain of the bestrophin protein. The NM_004183.4:p.
(Glu35Lys) variant has not been reported in the 1000 
genomes [36] and gnomAD databases [37] (accessed 
 30th January 2022). The in-silico predictions according to 
PolyPhen-2 is to be probably damaging; and deleterious 
according to SIFT and MutationTaster2. The reference 
codon is evolutionarily conserved in mammals.

Another heterozygous missense mutation, NM_004183.4 
(BEST1):c.313C > A, was found in exon 4 of the BEST1 
gene in both patients (chr11:g.61955783C > A; c.313C > A), 
and was further validated by Sanger sequencing (Fig. 4B). 
It resulted in the amino acid substitution of Arginine 
(positively charged) for Serine (uncharged) at codon 105, 
NM_004183.4:p.(Arg105Ser) (Table  2). The variant lies in 

Fig. 3 Pedigree of the family with two affected members. Patient A, a 17-year-old female (black arrow), and Patient B, a 15-year-old male

Table 1 Clinical profile of the patients

AC Anterior Chamber, BCVA Best-corrected visual acuity, FAF Fundus autofluorescence, OCT Optical Coherence Tomography, ERG electroretinogram, EOG 
Electrooculogram

Patient Age/sex Axial length/ AC depth 
(mm)

BCVA, spherical 
equivalents

FAF OCT ERG EOG

OD OS OD OS

A 17/F 21.80/2.65 21.64/ 2.71 6/9 (-1.25) 6/9 (-1.50) Hyper 
auto-
flourescent 
deposits

Intra-retinal spaces (schisis), 
sub-retinal deposits, subretinal 
fluid

Normal Absent light peak

B 15/M 21.61/ 3.48 21.54/ 3.53 6/6 (+ 5.00) 5/60 (+ 5.00) Hyper 
auto-
floures-
cenct 
deposits

Sub-retinal fluid and deposit Normal Absent light peak
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the RFP-TM, chloride channel domain of the bestrophin 
protein. The NM_004183.4:p.(Arg105Ser) variant has not 
been reported in the 1000 genomes databases [36] and 
has a minor allele frequency of 0.0007% in the gnomAD 
database (accessed  30th January 2022) [37]. The in-silico 
predictions of the variant according to PolyPhen-2 is to 
be probably damaging, and deleterious according to SIFT 
and MutationTaster2. The reference codon is evolutionarily 
conserved in mammals. This mutation has not been previ-
ously reported in patients with ARB or VMD. The results of 

next-gen sequencing are summarized in Table 2. The IGV 
depicting the distribution of alternate allele and wild type 
allele for both variations is shown in Supplementary figure 
S 1A and S 1B.

We analyzed the mother for both variants through Sanger 
sequencing to clarify whether the two mutations were 
located on separate BEST1 alleles. The NM_004183.4:p.
(Glu35Lys) was detected in a heterozygous condition along 
with the wild type in the unaffected mother of the proband 
(Fig. 4A, B).

Fig. 4 A Sequence chromatogram and alignment to the reference sequence showing the variant in exon 2 of the BEST1 gene 
(chr11:g.61951909G > A; c.103G > A; p.Glu35Lys) detected in heterozygous condition in the proband and the unaffected mother. B The variant 
in exon 4 of the BEST1 gene (chr11:g.61955783C > A; c.313C > A), was detected in the proband but not in the unaffected mother. The reference 
sequence NM_004183 of BEST1 was used

Table 2 Whole Exome Sequencing results of the BEST1 gene of patients A and B

Gene (Transcript) Location Nucleotide change Amino Acid change Inheritance PolyPhen-2 
prediction

ClinVar Classification

BEST1 (NM_004183.4) Exon 2 c.103G > A p.(Glu35Lys) Autosomal recessive Probably damaging Uncertain significance

Exon 4 c.313C > A p.(Arg105Ser) (novel) Autosomal recessive Probably damaging Uncertain significance
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Discussion
This report analyzed the clinical and imaging char-
acteristics along with the genetic test results of two 
siblings with ARB. The diagnosis of ARB was estab-
lished based on clinical observation and multimodal 
retinal imaging and further confirmed by whole exome 
sequencing and Sanger sequencing. Patient A demon-
strated good central acuity, as seen in other patients 
with ARB in the first and second decade of life [42]. We 
noted that the sibling (patient B) had poor visual acuity 
in one eye due to amblyopia resulting from uncorrected 
esotropia. In addition, both the patients had short axial 
lengths in both eye without any abnormal iridocorneal 
anatomic features or shallow anterior chamber depth. 
Reduced axial length predisposes patients to angle-
closure glaucoma, potentially leading to a further visual 
decline [42].

The whole exome sequencing revealed a likely com-
pound heterozygous mutations in the BEST1 gene 
shared by both siblings that likely led to ARB. The 

variants were validated by Sanger sequencing. One 
of the alleles carried a missense mutation in exon 2 
NM_004183.4(BEST1):c.103G > A, which resulted in 
the amino acid substitution from negatively-charged 
Glutamic acid to positively-charged Lysine at the  35th 
amino acid residue, NM_004183.4:p.(Glu35Lys). This 
variant was detected in the unaffected mother in a het-
erozygous state along with the wild  type using Sanger 
sequencing. The variant has been submitted to ClinVar 
(accession number- RCV000356527) and has previously 
been reported by Tian et al. and Habibi et al., albeit in a 
homozygous state [43, 44]. To our knowledge, ours is the 
first study to report this variant in a compound heterozy-
gous state.

Another variation was observed to be a transver-
sion in exon 4 NM_004183.4(BEST1):c.313C > A, 
which resulted in the amino acid substitution from 
positively-charged Arginine to uncharged Serine at 
 105th amino acid residue, NM_004183.4:p.(Arg105Ser) 
(Table  2). To our knowledge, this mutation has not 

Fig. 5 A Schematic representation of BEST1 (NM_004183.4) transcript. Grey boxes represent exons, and lines connecting them represent introns. 
Green boxes represent the translation start site, while red boxes represent the translation termination site. B Topological representation of BEST1 
(Milenkovic et al.) representing mutation sites denoted by red circles. C Generated structural model of BEST1 wild type, E35K, and R105S. D 
Multiple sequence alignment of BEST1 from different species
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been reported previously in patients with either ARB or 
VMD. This variant is predicted to be pathogenic. The 
NM_004183.4(BEST1):c.313C > A (p.Arg105Ser) has 
been submitted to ClinVar previously (accession number- 
RCV002025371.1) [31]. Two other disease-causing muta-
tions affecting the same codon, p.Arg105Gly in patients 
with BMD, and p.Arg105Cys in a 69-year-old patient with 
age-related macular degeneration, have been reported 
[45, 46]. Interestingly, the p.Arg105Gly mutation resulted 
in additional extramacular multifocal deposits similar to 
ARB in three patients with BVMD [45].

Notably, the mutations discovered in this study are 
localized to the N-terminal region (Fig. 5A-C). The muta-
tion NM_004183.4:p.(Glu35Lys) localizes to the first 
transmembrane domain, while the NM_004183.4:p.(Arg-
105Ser) mutation alters an amino acid in the cytoplas-
mic region distal to the second transmembrane domain 
(Fig.  5B). The amino acids at these positions are con-
served among mammals (Fig.  5D). Among the roughly 
335 mutations reported in BEST1 thus far, only about 40 
compound heterozygous and homozygous mutations are 
associated with ARB. [26, 34]

Although the detailed pathophysiology that leads to the 
disease is poorly understood, most of the characterized 
BEST1 mutations alter the electrophysiological properties 
of the calcium-activated chloride channel (CaCC), which 
is thought to be determined by the N-terminus portion of 
BEST1, affecting the flow to chloride across the RPE [1, 
5]. Crystallographic studies of the wild type and mutated 
proteins suggest that BEST1 variants alter the cytoplasmic 
pore structure, which affects the permeability of anions or 
anion-cation selectivity, leading to lipofuscin accumula-
tion and degeneration of the RPE (Fig. 5C) [47].

What this study adds
This study expands the genetic spectrum of the BEST1 
variants associated with an ARB phenotype by reporting 
a novel variant p.(Arg105Ser), found in compound het-
erozygosity with another clinically significant variant in 
two affected siblings. Furthermore, the reported variant 
p.(Arg105Ser) variant appears to contribute to the ARB 
phenotype as the other variant alone did not cause any 
disease in the carrier (unaffected mother).

Limitations
Although it does not affect the diagnosis, the genetic 
testing of the unaffected father and other unaffected sib-
lings would have been ideal but could not be carried out.
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