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Abstract 

Background:  To verify efficacy of automatic screening and classification of glaucoma with deep learning system.

Methods:  A cross-sectional, retrospective study in a tertiary referral hospital. Patients with healthy optic disc, high-
tension, or normal-tension glaucoma were enrolled. Complicated non-glaucomatous optic neuropathy was excluded. 
Colour and red-free fundus images were collected for development of DLS and comparison of their efficacy. The con‑
volutional neural network with the pre-trained EfficientNet-b0 model was selected for machine learning. Glaucoma 
screening (Binary) and ternary classification with or without additional demographics (age, gender, high myopia) were 
evaluated, followed by creating confusion matrix and heatmaps. Area under receiver operating characteristic curve 
(AUC), accuracy, sensitivity, specificity, and F1 score were viewed as main outcome measures.

Results:  Two hundred and twenty-two cases (421 eyes) were enrolled, with 1851 images in total (1207 normal and 
644 glaucomatous disc). Train set and test set were comprised of 1539 and 312 images, respectively. If demographics 
were not provided, AUC, accuracy, precision, sensitivity, F1 score, and specificity of our deep learning system in eye-
based glaucoma screening were 0.98, 0.91, 0.86, 0.86, 0.86, and 0.94 in test set. Same outcome measures in eye-based 
ternary classification without demographic data were 0.94, 0.87, 0.87, 0.87, 0.87, and 0.94 in our test set, respectively. 
Adding demographics has no significant impact on efficacy, but establishing a linkage between eyes and images is 
helpful for a better performance. Confusion matrix and heatmaps suggested that retinal lesions and quality of pho‑
tographs could affect classification. Colour fundus images play a major role in glaucoma classification, compared to 
red-free fundus images.

Conclusions:  Promising results with high AUC and specificity were shown in distinguishing normal optic nerve from 
glaucomatous fundus images and doing further classification.

Keywords:  Glaucoma screening and classification, Deep learning system, Normal- tension glaucoma, Colour fundus 
photograph, High myopia

Background
Glaucoma is one of the leading causes of blindness 
worldwide, affecting quality of life and working ability if 
diagnosis is delayed [1]. Glaucoma usually develops in 
elder people, presenting glaucomatous optic neuropathy 
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(GON), corresponding retinal nerve fibre layer (RNFL) 
and visual field (VF) defects [2]. Since early symptoms 
could be insidious, effective glaucoma screening is 
important for early diagnosis, especially in health profes-
sional shortage areas.

Heidelberg retinal tomography (HRT), optical coher-
ence tomography (OCT), VF tests, and colour fundus 
photography with red-free imaging, are pivotal arma-
mentarium for glaucoma diagnosis [3]. Although HRT 
and OCT can detect changes of the optic disc and sur-
rounding RNFL, quality of images and availability of 
facilities limit their wide application. By contrast, fun-
dus imaging is easily equipped, less technique-depend-
ant, and already widely used, which is reasonable to be 
a candidate facility for glaucoma screening. With red-
free imaging, disc haemorrhage (DH) and wedge-shaped 
RNFL defects can be easily detected as clues of glaucoma; 
however, its value in DLS-facilitated glaucoma screening 
and classification is required to be explored.

Artificial intelligence (A.I.) with deep learning system 
(DLS) has widely been explored in ophthalmology for 
screening diabetic retinopathy (DR), macular degen-
eration, papilledema, and glaucoma [4–7]. Compared to 
commercialised products in detecting DR, DLS for glau-
coma screening and classification is still under develop-
ment. OCT scanning for RNFL thickness or combined 
with fundus images in presented various efficacy of glau-
coma diagnosis and predicting progression with area 
under receiver operating characteristic curve (AUC) 
from 83 to 96% [8–10]. When detecting glaucoma with 
fundus images from referred diabetic patients, AUC of 
94.2%, sensitivity of 96.4%, and specificity of 87.2% were 
found, respectively [11]. Efficacy of fundus imaging-
based DLS showed that AUC, sensitivity, and specificity 
were 98.6%, 95.6%, and 92.0%, respectively in detection of 
GON [7]. When equipped with different image-cropping 
ratio on optic nerve head (ONH) or peripheral images 
in DLS, the results revealed that information from ONH 
and surrounding retina both contributed to glaucoma 
diagnosis [12]. With the pre-trained algorithm, even fun-
dus photographs from smartphones can also be consid-
ered as an interface to screen glaucoma, which revealed 
better performance in advanced stage [13].

Besides glaucoma screening, glaucoma progression in 
myopic cohort with normal- tension glaucoma (NTG) 
had also been verified with machine learning [14]. Differ-
ent from high-tension glaucoma (HTG), NTG is possibly 
overlooked due to its normal intraocular pressure (IOP) 
and requirements of mandatory ocular examinations 
and systemic survey to exclude other optic neuropathy 
before diagnosis. In published articles, DLS can reach an 
AUC of 0.966 in detecting structural changes with OCT-
based parameters between glaucoma suspects and early 

NTG patients [15]. Although DH in fundus imaging is 
one common presentation of NTG, whether other phe-
notypes exist in fundus images to distinguish NTG from 
other types of glaucoma is not fully explored. Since dif-
ferent algorithms, enrolled parameters, and results exist 
between DLSs, we aimed to develop DLS for glaucoma 
screening and classification in this study.

Methods
Patient
The study was approved by the Institutional Review 
Board of Chang Gung Memorial Hospital, Linkou 
(No.201801801B0C601) and adhered to the tenets of the 
Declaration of Helsinki. Informed consent was waived in 
all patients and all images were turned into anonymous 
information before training and testing. Diagnosis and 
enrolment of glaucoma patients was based on Ander-
son’s VF criteria. In brief, a vertically enlarged cupping, 
defect of RNFL in colour/red-free fundus images/OCT, 
and glaucomatous VF defect were documented to con-
firm glaucoma diagnosis. At least two consistent glauco-
matous VF defects were recorded as baseline data before 
diagnosis, except for end-stage glaucoma patients with 
prominent clinical presentation and imaging findings, 
such as total cupping, pale disc, elevated IOP, and tun-
nel vision. Patients with HTG, NTG, and non-GON were 
enrolled. Among GON patients, those with IOP equal or 
higher than 22  mmHg were diagnosed as HTG. Treat-
ment-naïve patients with long-term IOP equal or lower 
than 21  mmHg were viewed as NTG. Pre-perimetric 
glaucoma and glaucoma suspects were not enrolled.

Fundus images were taken with fundus cameras (Carl 
Zeiss VISUCAM 524, Canon CR-2AF, and KOWA non-
myd 8  s). The colour fundus photographs and red-free 
fundus images were taken in two ways, optic nerve 
head-centred and papillo-macular area-centred images. 
Although three machines for photography were used 
with different resolution, all enrolled images were resized 
into the same resolution before analysis. Demographics, 
including age, gender, high myopia and diagnosis, were 
collected. High myopia was defined as spherical equiva-
lent equal or less than -6 D or axial length longer than 
26 mm. All the fundus images were designated to train or 
test set. At first, we dispatched images to the train or test 
set based on the patients; therefore, same patient would 
not appear in the train and test set at the same time. 
Then, we further divided the train set into training and 
validation set based on eye level, which meant images 
from the same eye would be fully partitioned into either 
training or validation set.

We trained the DLS by using AutoDL API (Application 
Programming Interface), which is the API of MAIA soft-
ware (Medical Artificial Intelligence Aggregator) (Muen 
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Biomedical and Optoelectronic Technologist, Inc, Taipei 
city, Taiwan). We applied the convolutional neural net-
work (CNN) with the model structure of EfficientNet-
b0 pre-trained on ImageNet [16, 17]. All fundus images 
were resized to 256*256. Data augmentations and drop-
out layers were applied to prevent overfitting [18]. Then, 
the extracted feature maps from CNN were flattened 
and concatenated with demographic features, which 
was inputted into the fully connected layers. The train-
ing epoch was 100, and the batch size was 32. The loss 
function was cross-entropy loss, and the optimizer was 
Adam [19]. During the training process, the learning rate 
was scheduled by a one-cycle of cosine annealing strat-
egy [20, 21]. Five-fold cross validation was performed to 
validate the models. Among the five models from fivefold 
cross validation, the one with the highest F1 score was 
chosen for model testing. In binary classification, images 
were classified into GON or non-GON by DLS with or 
without demographics. Similarly, in ternary classifica-
tion, non-GON people, HTG, and NTG were classified 
with or without demographic data. Confusion maps and 
heatmaps were created after analysis.

AUC, accuracy, precision, sensitivity, specificity, and F1 
score were used as outcome measures. Precision (posi-
tive predictive value) was defined as the fraction of true 
glaucoma among all pictures classified as glaucoma. F1 
score was selected to evaluate the performance of model 
prediction. SPSS statistics software was used to calculate 
p value and other statistics. P value < 0.05 was viewed as 
statistically significant. The independent t test and the 
Chi-squared test were used to compare data in binary 
classification. One-way analysis of variance (ANOVA) 
with Tukey’s honestly significant difference (HSD) test 
and the Chi-squared test were utilized to compare data 
in ternary classification and between combinations of 
demographic data.

Results
Two hundred and twenty-two cases (421 eyes) were 
enrolled, half male and half female, with 1851 raw images 
in sum. Among 421 eyes, 290 eyes presented healthy 
optic nerves and the rest 131 eyes had GON, of which 85 
eyes were HTG and the other 46 eyes had long-term nor-
mal IOP.

In the binary classification, 1207 raw images of the 
optic disc were non-GON, and 644 images were GON. 
In ternary classification, 644 images of GON were fur-
ther classified into 235 images of NTG and 409 images of 
HTG. There were 1851 images included in the dataset, in 
which 1231 images (283 eyes) were used as a training set 
and 308 images (68 eyes) were dispatched to a validation 
set. The rest 312 images (70 eyes) were prepared as a test 
set. Mean age of our healthy and GON patients in binary 

classification were 48.33 ± 18.54 and 61.22 ± 16.79 years, 
respectively, with significant difference (p < 0.001). In 
Chi-squared test, there was no difference between glau-
coma and control group in gender (p = 0.49). In ter-
nary classification, mean age of non-GON, NTG, and 
HTG patients were 48.33 ± 18.54, 60.1 ± 17.85, and 
61.87 ± 16.28, respectively. P value < 0.001 was noted in 
ANOVA test, which meant three groups have significant 
difference in age distribution. Demographic data were 
shown in Table 1.

Our model was verified in two ways, including image- 
or eye-based analysis. Each image was used as one 
independent data in the former analysis; while, images 
from the same eye was annotated beforehand as a spe-
cific parameter for later analysis. The results in differ-
ent analyses were presented in Tables 2 and 3. Five-fold 
cross validation were performed with no significantly 
different result. In brief, precision, accuracy, sensitivity, 
specificity, F1 score, and AUC in image-based glaucoma 
screening were 0.92, 0.79, 0.43, 0.98, 0.59, and 0.85 in 
test set. After providing the linkage between each image 
and the eye, the eye was classified as glaucoma if any of 
its images was predicted as positive. In this eye-based 
analysis, precision, accuracy, sensitivity, specificity, F1 
score and AUC were 0.86, 0.91, 0.86, 0.94, 0.86, and 0.98 
in test set, in which accuracy, sensitivity, F1 score, and 
AUC were largely improved, while precision and specific-
ity slightly decreased. The receiver operating character-
istic curves (ROC curves) in binary classification with or 
without demographic information in test set were shown 
in Fig. 1 (a and b). Confusion matrix to present image- or 
eye- based binary classification in test set was shown in 
Fig. 2 (a and b). Confusion matrix of binary classification 
after adding extra information was shown in Fig. 2 (c and 
d). We added information about age, gender, and high 
myopia into our model, no improvement was observed 
in the outcome measures in both validation and test set 
in binary classification (Tables 2 and 3). When compar-
ing the outcome measures between red-free and colour 

Table 1  Demographic data of healthy people, NTG, and HTG 
patients

NTG Normal-tension glaucoma, HTG High-tension glaucoma
* One-way ANOVA
† X2 test

features Healthy 
(n = 165)

NTG (n = 30) HTG (n = 52) P value

Age (years) 48.33 ± 18.54 60.1 ± 17.85 61.87 ± 16.28  < 0.001*

Gender 
(female)

50.9% 50% 44.2% 0.04†

High myopia 16.3% 20% 19.2%
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fundus images, red-free imaging showed higher effi-
cacy in most parameters in glaucoma screening, but not 
reached statistical significance (Tables  4 and  5, Fig.  3a). 
In the heatmaps of binary classification, a weighted area 
was found outside non-GON optic disc at four quadrants 
(Fig.  4 a and b). A weighted area temporal to the optic 
disc (Fig. 4 c to h) was shown in the heatmaps of GON.

To verify DLS in ternary classification, validation set 
and test set with or without demographics were analyzed. 
The results in different sets were presented in Tables  2 
and  3. To provide prediction without demographics in 
an eye-based manner, we averaged the predicted prob-
abilities of each image. In this eye-based analysis of test 
set in ternary classification, all outcome metrics were 
improved, achieving an accuracy of 0.87, F1 score(macro) 
of 0.77, and AUC(macro) of 0.9. The ROC curves in ter-
nary classification with or without demographics in test 
set were shown in Fig. 1 (c and d). Confusion matrix of 
ternary classification without demographics in test set 
was shown in Fig. 2 (e and f ). Distribution of our results 
of ternary classification after adding clinical information 
was shown in Fig. 2 g and h. No remarkable increase of 
all the outcome measures was noted after adding extra 
information into image- and eye-based analysis in ter-
nary classification (Tables  2 and  3). We compared the 

outcome measures of red-free and colour fundus images, 
colour fundus images had a better performance in ter-
nary classification with statistically significant difference 
(Tables 4 and 5, Fig. 3b),

The results of ternary classification were also visualized 
in heatmaps, within which a weighted area was mainly 
supero-temporal to normal disc (Fig.  5 a and b). Heat-
maps of the eyes with HTG showed a weighted area over 
the disc (Fig. 5 c and d). However, heatmaps of NTG pre-
sented a weighted area superior to the disc (Fig. 5 e and 
f ). Examples of misclassification on heatmap in ternary 
classification were shown in Fig. 5 g and h.

Discussion
In this study, an image-based or eye-based DLS was 
developed to perform glaucoma screening. Moreover, 
an algorithm was developed to verify ternary classifica-
tion for non-GON, HTG, and NTG patients. Although 
we only enrolled 222 patients (421 eyes) with 1851 
images, in image-based analysis of binary classifica-
tion, AUC reached 0.85 in test set with the assistance of 
dropout function and data augmentation. In eye-based 
analysis, accuracy was improved from 0.79 to 0.91 and 
F1 score had achieved 0.86. In ternary classification, F1 
score(macro) achieved 0.77, and AUC reached 0.9 in 

Table 2  Efficacy of binary and ternary classification by the deep learning system

AUC​ Area under receiver operating characteristic curve

without additional information with age and gender information

validation set testing set validation set testing set

Metrics Image-based Eye-based Image-based Eye-based Image-based Eye-based Image-based Eye-based

Binary classification
  Accuracy 0.82(0.03) 0.88(0.04) 0.79 0.91 0.84(0.05) 0.89(0.06) 0.83 0.87

  Precision 0.85(0.06) 0.78(0.07) 0.92 0.86 0.83(0.06) 0.79(0.07) 0.83 0.75

  Sensitivity 0.61(0.12) 0.86(0.09) 0.43 0.86 0.69(0.09) 0.89(0.07) 0.63 0.86

  Specificity 0.94(0.03) 0.89(0.04) 0.98 0.94 0.92(0.05) 0.88(0.06) 0.93 0.88

  F1 score 0.70(0.06) 0.82(0.06) 0.59 0.86 0.75(0.08) 0.84(0.06) 0.71 0.8

  AUC​ 0.91(0.02) 0.99(0.01) 0.85 0.98 0.91(0.04) 0.98(0.01) 0.9 0.98

Ternary classification
  Accuracy 0.78(0.04) 0.82(0.03) 0.8 0.87 0.77(0.05) 0.81(0.05) 0.77 0.81

  Precision (macro) 0.65(0.05) 0.69(0.07) 0.73 0.88 0.64(0.08) 0.64(0.09) 0.69 0.72

  Precision (micro) 0.78(0.04) 0.82(0.03) 0.8 0.87 0.77(0.05) 0.81(0.05) 0.77 0.81

  Sensitivity (macro) 0.66(0.06) 0.68(0.06) 0.7 0.74 0.63(0.06) 0.65(0.08) 0.69 0.72

  Sensitivity (micro) 0.78(0.04) 0.82(0.03) 0.8 0.87 0.77(0.05) 0.81(0.05) 0.77 0.81

  Specificity (macro) 0.87(0.03) 0.89(0.03) 0.88 0.91 0.86(0.03) 0.88(0.04) 0.87 0.89

  Specificity (micro) 0.89(0.02) 0.91(0.02) 0.9 0.94 0.89(0.03) 0.91(0.03) 0.89 0.91

  F1 score (macro) 0.65(0.05) 0.67(0.07) 0.7 0.77 0.62(0.07) 0.64(0.08) 0.69 0.72

  F1 score (micro) 0.78(0.04) 0.82(0.03) 0.8 0.87 0.77(0.05) 0.81(0.05) 0.77 0.81

  AUC (macro) 0.87(0.04) 0.91(0.04) 0.88 0.9 0.85(0.05) 0.90(0.04) 0.86 0.9

  AUC (micro) 0.91(0.03) 0.93(0.02) 0.91 0.94 0.91(0.03) 0.94(0.02) 0.89 0.93
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eye-based analysis. Confusion matrix and heatmap pro-
vided us more details about distribution of data after 
classification and weighted area in DLS.

Although age, gender, and myopia are viewed as 
risk factors for open angle- or angle closure glaucoma 
[22–24], no remarkable improvement of performance 
has been found in our binary and ternary classifica-
tion when providing demographics. In clinical settings, 
these factors are used to evaluate glaucoma suspect; 
however, it seems that image-only DLS is capable of 
doing screening and classification without additional 
information. Furthermore, impacts of age, gender, and 
myopia on the eye are fundamentally based on theo-
ries that aging oxidative stress to trabecular meshwork, 
structural change at the angle of anterior chamber, and 
circulation changes around optic nerve head. Other 
complicated influences of high myopia, such as peri-
papillary atrophy, retinal thinning, and tilted optic disc, 
also potentially play a role in glaucoma development. 
These molecular and structural changes may leave no 
discriminative clues in fundus images, resulting in less 
impacts in our results. Consequently, a simple fundus 
images-based screening system without demographics 
can be applied in telemedicine for fast screening.

Images of optic disc, OCT, VF, and clinical demograph-
ics had ever been chosen to verify the efficacy of glau-
coma diagnosis with different algorithms in published 
studies. Li et al. evaluated efficacy of the DLS in detect-
ing referable GON based on 70,000 colour fundus images 
alone from online dataset, presenting an AUC of 98.6%, 
sensitivity of 95.6%, and specificity of 92.0% [7]. Com-
pared to their study, convincing result of our glaucoma 
screening was shown with an AUC of 98.0%, sensitivity 
of 86.0% and specificity of 94.0%, based on less images. 
Different methods of image extraction had also been 
integrated in fundus image-based DLSs, such as wavelet 
feature [25], features of ONH [26], and adaptive thresh-
old-based image processing [27], in which the optic disc 
and RNFL were specifically segmented and extracted for 
analysis. However, misalignment and misclassification 
tend to develop when segmentation and localization fail 
to be synchronized. Since informative data exist in both 
optic nerve and the retina in glaucoma screening [9], in 
our study, we enrolled whole fundus images, including 
macula-centred, optic nerve head-centred, and red-free 
images to avoid overmanipulating data.

The advantage of our method is that it keeps most 
information within fundus images, explores the ability 

Table 3  Efficacy of binary and ternary classification with or without information of high myopia

AUC​ Area under receiver operating characteristic curve

with information of high myopia only with age, gender, and high myopia information

validation set testing set validation set testing set

Metrics Image-based Eye-based Image-based Eye-based Image-based Eye-based Image-based Eye-based

Binary classification
  Accuracy 0.81(0.05) 0.88(0.04) 0.82 0.86 0.81(0.02) 0.88(0.06) 0.76 0.89

  Precision 0.89(0.06) 0.86(0.06) 0.87 0.74 0.88(0.08) 0.86(0.10) 0.9 0.88

  Sensitivity 0.52(0.18) 0.77(0.18) 0.57 0.81 0.53(0.10) 0.77(0.18) 0.35 0.71

  Specificity 0.96(0.02) 0.94(0.03) 0.96 0.88 0.95(0.06) 0.92(0.09) 0.98 0.96

  F1 score 0.63(0.16) 0.79(0.10) 0.69 0.77 0.65(0.06) 0.79(0.11) 0.5 0.79

  AUC​ 0.89(0.04) 0.99(0.01) 0.89 0.98 0.90(0.02) 0.99(0.01) 0.86 0.98

Ternary classification
  Accuracy 0.76(0.03) 0.79(0.05) 0.75 0.86 0.75(0.04) 0.81(0.02) 0.78 0.83

  Precision (macro) 0.63(0.04) 0.66(0.07) 0.61 0.73 0.63(0.04) 0.65(0.06) 0.7 0.74

  Precision (micro) 0.76(0.03) 0.79(0.05) 0.75 0.86 0.75(0.04) 0.81(0.02) 0.78 0.83

  Sensitivity (macro) 0.65(0.06) 0.67(0.09) 0.6 0.7 0.64(0.04) 0.68(0.06) 0.69 0.69

  Sensitivity (micro) 0.76(0.03) 0.79(0.05) 0.75 0.86 0.75(0.04) 0.81(0.02) 0.78 0.83

  Specificity (macro) 0.87(0.02) 0.88(0.03) 0.85 0.9 0.86(0.02) 0.89(0.02) 0.86 0.87

  Specificity (micro) 0.88(0.02) 0.90(0.02) 0.87 0.93 0.88(0.02) 0.90(0.01) 0.89 0.91

  F1 score (macro) 0.64(0.05) 0.66(0.07) 0.6 0.71 0.63(0.04) 0.66(0.05) 0.68 0.7

  F1 score (micro) 0.76(0.03) 0.79(0.05) 0.75 0.86 0.75(0.04) 0.81(0.02) 0.78 0.83

  AUC (macro) 0.85(0.04) 0.90(0.04) 0.87 0.9 0.87(0.05) 0.92(0.04) 0.88 0.91

  AUC (micro) 0.89(0.04) 0.93(0.03) 0.91 0.95 0.90(0.04) 0.94(0.03) 0.92 0.95
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of DLSs, simulates the real-world clinical situation, 
and can be applied in daily practice. The disadvan-
tage of analyzing the whole fundal pictures results 
from possible noise of any retinal or optic disc lesions 
and artifacts in images. When comparing the perfor-
mance of DLS in binary and ternary classification with 
red-free and colour fundus images, red-free imaging 
seemed helpful in glaucoma screening but presented no 

statistical significance in our results. However, colour 
fundus images showed better and statistically signifi-
cant performance in ternary classification. The sharper 
signal along RNFL defects in red-free imaging, com-
pared to colour fundus images, may explain remarkable 
outcome measures in glaucoma screening and in clini-
cal practice. However, indistinguishable RNFL defects 
may exist between HTG and NTG; therefore, colour 
images with more digital information are favoured in 

Fig. 1  The ROC curves with AUC in binary and ternary classification with or without demographics. Binary classification with (a) and without (b) 
information of age, gender, and high myopia in test set. Ternary classification with (c) and without (d) information of age, gender, and high myopia 
in test set
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Fig. 2  Image- or eye-based confusion matrix in test set of binary and ternary classification. Image- (a) and eye-based (b) analysis of binary 
classification (0.0 = normal; 1.0 = glaucoma) in test set. After adding information of age, gender, and high myopia, results of binary classification in 
test set with image- (c) or eye-based (d) analysis. Image- (e) and eye-based (f) analysis of ternary classification (0.0 = normal; 1.0 = normal-tension 
glaucoma; 2.0 = high-tension glaucoma) in test set. After adding information of age, gender, and high myopia, results of ternary classification in test 
set with image- (g) or eye-based (h) analysis

Table 4  Efficacy of binary and ternary classification stratified by red-free photographs and non-red-free photographs

AUC​ Area under receiver operating characteristic curve

without additional information with age and gender information

validation set testing set validation set testing set

Metrics Red-free Not red-free Red-free Not red-free Red-free Not red-free Red-free Not red-free

Binary classification
  Accuracy 0.82(0.04) 0.82(0.03) 0.85 0.72 0.84(0.06) 0.85(0.07) 0.85 0.80

  Precision 0.86(0.06) 0.85(0.10) 0.94 0.88 0.84(0.07) 0.82(0.10) 0.84 0.81

  Sensitivity 0.66(0.10) 0.54(0.20) 0.59 0.26 0.72(0.07) 0.65(0.13) 0.69 0.57

  Specificity 0.93(0.03) 0.94(0.05) 0.98 0.98 0.91(0.06) 0.93(0.05) 0.94 0.93

  F1 score 0.74(0.06) 0.63(0.13) 0.73 0.41 0.77(0.07) 0.72(0.12) 0.76 0.67

  AUC​ 0.92(0.03) 0.91(0.03) 0.87 0.86 0.91(0.05) 0.91(0.05) 0.92 0.88

Ternary classification
  Accuracy 0.77(0.06) 0.79(0.05) 0.81 0.80 0.77(0.07) 0.78(0.07) 0.76 0.79

  Precision (macro) 0.64(0.07) 0.67(0.06) 0.53 0.77 0.59(0.08) 0.67(0.09) 0.50 0.73

  Precision (micro) 0.77(0.06) 0.79(0.05) 0.81 0.80 0.77(0.07) 0.78(0.07) 0.76 0.79

  Sensitivity (macro) 0.64(0.08) 0.68(0.07) 0.55 0.74 0.60(0.07) 0.66(0.08) 0.51 0.75

  Sensitivity (micro) 0.77(0.06) 0.79(0.05) 0.81 0.80 0.77(0.07) 0.78(0.07) 0.76 0.79

  Specificity (macro) 0.87(0.04) 0.87(0.03) 0.88 0.87 0.86(0.04) 0.86(0.04) 0.85 0.89

  Specificity (micro) 0.89(0.03) 0.90(0.03) 0.90 0.90 0.88(0.04) 0.89(0.04) 0.88 0.89

  F1 score (macro) 0.63(0.07) 0.66(0.06) 0.54 0.74 0.59(0.07) 0.64(0.09) 0.50 0.73

  F1 score (micro) 0.77(0.06) 0.79(0.05) 0.81 0.80 0.77(0.07) 0.78(0.07) 0.76 0.79

  AUC (macro) 0.87(0.05) 0.88(0.04) 0.77 0.92 0.84(0.06) 0.87(0.05) 0.75 0.90

  AUC (micro) 0.90(0.04) 0.91(0.04) 0.91 0.92 0.90(0.04) 0.91(0.04) 0.87 0.91
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ternary classification. To mix two types of images for 
the algorithm maintains benefits of each component, 
but colour fundus images seem sufficient to help glau-
coma screening and classification in DLS. Conclusion 
has not yet been made in which kind of images are suit-
able for DLS. How to balance pros and cons between 
maintaining enough amount of information and mini-
mizing noise in images remains to be declared.

Although demographics seemed to play less role in our 
DLS for glaucoma diagnosis and classification, linkage 
between images and the eyes showed meaningful impacts 
on performance. In glaucoma screening, eye-based anal-
ysis improved all the outcome measures, compared to 
image-based analysis, except for precision and specificity. 
This phenomenon may be attributed to increased false 
positive since glaucoma is diagnosed when one of the 
images from the same eye is predicted to be positive. By 
contrast, the strategy averaging probability of all images 
to predict a final diagnosis was used in our ternary clas-
sification. This strategy improved all outcome measures 
in ternary classification.

According to the confusion matrixes (Fig.  2e-h), DLS 
for ternary classification is still effective to identify non-
GON from GON, but less effective in identifying NTG 
from non-GON and HTG. This result may be attributed 

to several potential reasons, including small number 
of NTG eyes and natural entity of HTG/NTG that no 
remarkable morphological difference exists between their 
fundus images. By providing linkage between eyes and 
images, the performance can be improved in all outcome 
metrics. Moreover, performance can also be improved by 
using macro or micro averages when doing ternary classi-
fication. To further interpret confusion matrix, specificity 
was not significantly improved by adding demographics 
in both binary and ternary classification; meanwhile, this 
additional information did not remarkably improve clas-
sification of glaucoma. Similar to our multiple classifica-
tion, one study aimed to identify GON with individual 
mean deviation in VF report from healthy people by ste-
reo fundus images. Their results showed AUC from 0.89 
to 0.97, according to different conditions [28]. Interest-
ingly, performance of IOP prediction between a multi-
variate linear regression model (MLM) with 35 systemic 
variables and a DLS with colour fundus images showed 
that the former had a better predictive value [29]. The 
results may support that it may be better to use demo-
graphics to predict physiological parameters than to do 
glaucoma screening with images.

Heatmaps were used to visualize the viewpoint of the 
DLS. In binary classification, weighted area presented at 

Table 5  Efficacy of binary and ternary classification with or without information of high myopia stratified by red-free photographs and 
non-red-free photographs

AUC​ Area under receiver operating characteristic curve

with information of high myopia only with age, gender, and high myopia information

validation set testing set validation set testing set

Metrics Red-free Not red-free Red-free Not red-free Red-free Not red-free Red-free Not red-free

Binary classification
  Accuracy 0.80(0.05) 0.81(0.08) 0.85 0.79 0.81(0.02) 0.81(0.03) 0.77 0.76

  Precision 0.91(0.07) 0.88(0.11) 0.89 0.84 0.89(0.10) 0.86(0.10) 0.86 0.95

  Sensitivity 0.55(0.16) 0.47(0.24) 0.63 0.51 0.57(0.11) 0.46(0.12) 0.35 0.34

  Specificity 0.96(0.03) 0.97(0.03) 0.96 0.95 0.94(0.08) 0.96(0.04) 0.97 0.99

  F1 score 0.67(0.12) 0.57(0.26) 0.74 0.64 0.69(0.06) 0.58(0.08) 0.50 0.50

  AUC​ 0.89(0.04) 0.90(0.03) 0.90 0.87 0.91(0.03) 0.89(0.03) 0.83 0.89

Ternary classification
  Accuracy 0.74(0.06) 0.78(0.04) 0.75 0.74 0.73(0.05) 0.78(0.04) 0.77 0.80

  Precision (macro) 0.61(0.05) 0.66(0.04) 0.55 0.64 0.61(0.05) 0.64(0.04) 0.60 0.74

  Precision (micro) 0.74(0.06) 0.78(0.04) 0.75 0.74 0.73(0.05) 0.78(0.04) 0.77 0.80

  Sensitivity (macro) 0.63(0.07) 0.67(0.08) 0.53 0.61 0.61(0.06) 0.66(0.04) 0.56 0.73

  Sensitivity (micro) 0.74(0.06) 0.78(0.04) 0.75 0.74 0.73(0.05) 0.78(0.04) 0.77 0.80

  Specificity (macro) 0.86(0.03) 0.86(0.04) 0.87 0.83 0.86(0.03) 0.86(0.02) 0.85 0.87

  Specificity (micro) 0.87(0.03) 0.89(0.02) 0.88 0.87 0.87(0.03) 0.89(0.02) 0.88 0.90

  F1 score (macro) 0.61(0.06) 0.66(0.06) 0.54 0.62 0.61(0.05) 0.65(0.04) 0.56 0.73

  F1 score (micro) 0.74(0.06) 0.78(0.04) 0.75 0.74 0.73(0.05) 0.78(0.04) 0.77 0.80

  AUC (macro) 0.84(0.06) 0.87(0.03) 0.83 0.88 0.87(0.07) 0.88(0.04) 0.82 0.90

  AUC (micro) 0.87(0.06) 0.90(0.03) 0.92 0.91 0.89(0.05) 0.92(0.03) 0.91 0.92
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peripheral retina in non-GON eyes and at the optic nerve 
in eyes with GON, presenting a different but efficient way 
for DLS to quickly identify glaucoma. Although DH or 
RNFL defect already existed in images, those GON mis-
interpreted into healthy optic disc may be resulted from 
artifact or other coexisting retinal lesions, such as macu-
lar pucker, myopic tessellated fundus, and large peripap-
illary atrophy (PPA), which showed that abnormal retinal 
presentations were first focused by DLS. Some glaucoma-
tous images from the same eye were misinterpreted into 
non-GON at first; however, sensitivity from these data 
improved when linkage between images and the eye was 
built. Images of healthy optic disc that are misinterpreted 
into GON may be resulted from influence of tortuous 
vessel, underexposure area, and PPA in fundal images.

The heatmap in ternary classification still showed a 
weighted area at the optic disc in HTG group. HTG 

images misinterpreted into NTG presented a weighted 
area over vascular bifurcation, arteriovenous nicking, or 
nasal retina. Similar to the heatmaps in binary classifica-
tion, lesions of retina or optic disc such as disc hemor-
rhage could mislead DLS to a wrong classification, even 
though remarkable RNFL defect existed at the same 
time. Different from heatmaps in binary classification, a 
weighted area presented at the region supero-temporal to 
the healthy optic nerve in the ternary classification. This 
phenomenon showed that DLS used different strategy to 
analyze data in binary and ternary classification.

The limitations of our study include limited case num-
bers, lack of remarkable retinal or optic disc lesions other 
than glaucoma, single ethnic background, and exclusion 
of pre-perimetric glaucoma. Small number of training 
and validation sets was viewed as a drawback in machine 
learning, which may affect accuracy of glaucoma 

Fig. 3  The outcome measures in image-based analysis of red-free or colour fundus images. Test metrics calculated from red-free fundus images 
and colour fundus images were compared by paired t-test. In binary classification, red-free fundus images achieved better performance in 
number, which was not statistically significant (a). Colour fundus images achieved better performance in ternary classification, in which statistically 
significant differences were observed (b). n.s. = not statistically significant
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screening and lead to overfitting [4]. However, dropout 
function, data augmentation, and analysis at eye level 
were used to achieve applicable accuracy and AUC in 

glaucoma screening and classification. Glaucoma screen-
ing in combined ocular diseases and detection of pre-
perimetric glaucoma are still major challenges for DLS.

Fig. 4  Binary classification presented by heatmap to show weighted area of deep learning system. Non-glaucomatous fundus (a) showed a 
weighted area peripherally, outside optic disc (b). Weighted area presented temporal to optic disc in normal-tension glaucoma (c and d) and 
high-tension glaucoma (e and f) in binary classification. Red-free fundal picture and its associated heatmap (g and h) in our study

Fig. 5  Ternary classification presented by heatmap to show weighted area of deep learning system. Non-glaucomatous fundus (a) showed 
weighted area supero-temporal to optic disc (b). Weighted area presented at optic disc in high-tension glaucoma (c and d) in ternary classification. 
Misclassification of normal-tension glaucoma into high-tension glaucoma (e), showing weighted area nasal to optic disc (f) in the left eye. 
High-tension glaucoma was misclassified into normal-tension glaucoma (g), presenting a weighted area inferior to optic disc (h) in the right eye



Page 11 of 12Hung et al. BMC Ophthalmology          (2022) 22:483 	

Conclusions
Identification of glaucoma and further classification 
into high-tension and normal- tension glaucoma can be 
achieved with the assistance of DLS, especially at eye 
level. Although DLS with red-free fundus images can ful-
fill the purpose of glaucoma screening, DLS with colour 
fundus images showed a better result in glaucoma classi-
fication. Clinical demographics seem to show no remark-
able impact on the outcome measures in the study.

Abbreviations
A.I.: Artificial intelligence; ANOVA: Analysis of variance; AUC​: Area under 
receiver operating characteristic curve; CNN: Convolutional neural network; 
DH: Disc haemorrhage; DLS: Deep learning system; DR: Diabetic retinopathy; 
GON: Glaucomatous optic neuropathy; HRT: Heidelberg retinal tomography; 
HSD: Honestly significant difference; HTG: High-tension glaucoma; NTG: 
Normal-tension glaucoma; OCT: Optical coherence tomography; ONH: Optic 
nerve head; PPA: Peripapillary atrophy; RNFL: Retinal nerve fibre layer; ROC 
curves: Receiver operating characteristic curves; VF: Visual field.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12886-​022-​02730-2.

Additional file 1: Supplementary Table 1. Cross validation results of 
binary classifications.

Additional file 2: Supplementary Table 2. Cross validation results of 
trinary classifications.

Additional file 3: Supplementary Table 3. Cross validation results of 
binary classifications stratified by red-free photographs and non-red-free 
photographs.

Additional file 4: Supplementary Table 4. Cross validation results of 
trinary classifications stratified by red-free photographs and non-red-free 
photographs.

Acknowledgements
Not applicable.

Authors’ contributions
KHH: planning, conduct and reporting of the work, conception, design, data 
collection and interpretation, revision. YCK: planning, design, data analysis and 
interpretation, algorithm development. YHT: planning, design, data analysis 
and interpretation, algorithm development. YTC: planning, design, data 
analysis and interpretation, algorithm development. CHW: conception, data 
analysis and interpretation. YCW: conception, data analysis and interpretation, 
consultation. Oscar KSL: planning, conception and design, consultation. The 
author(s) read and approved the final manuscript. 

Funding
This research received no specific grant from any funding agency in the pub‑
lic, commercial or not-for-profit sectors.

Availability of data and materials
The datasets generated or analysed during the current study are not publicly 
available due to the institutional regulations but are available from the cor‑
responding author on reasonable request.

Declarations

Ethics approval and consent to participate
No animal is involved in this study. The study was approved by the 
Institutional Review Board of Chang Gung Memorial Hospital, Linkou 

(No.201801801B0C601) and adhered to the tenets of the Declaration of 
Helsinki. Inform consent was waived by by the Institutional Review Board of 
Chang Gung Memorial Hospital, Linkou, due to its retrospective entity.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Ophthalmology, Chang-Gung Memorial Hospital, Linkou, 
No.5, Fu‑Hsing St., Kuei Shan Hsiang, Tao Yuan Hsien, Taiwan. 2 Chang-Gung 
University College of Medicine, No.259 Wen‑Hwa 1st Road, Kuei Shan Hsiang, 
Tao Yuan Hsien, Taiwan. 3 Institute of Clinical Medicine, National Yang Ming 
Chiao Tung University, No.201, Sec.2, Shih‑Pai Rd. Peitou, R.O.C, Taipei 112, Tai‑
wan. 4 Muen Biomedical and Optoelectronics Technologies Inc., Taipei, Taiwan. 
5 Stem Cell Research Centre, National Yang Ming Chiao Tung University, Taipei, 
Taiwan. 6 Department of Orthopedics, China Medical University Hospital, 
Taichung, Taiwan. 

Received: 17 April 2022   Accepted: 6 December 2022

References
	1.	 Quigley HA, Broman AT. The number of people with glaucoma world‑

wide in 2010 and 2020. Br J Ophthalmol. 2006;90:262–7.
	2.	 Shon K, Wollstein G, Schuman JS, Sung KR. Prediction of glaucomatous 

visual field progression: pointwise analysis. Curr Eye Res. 2014;39:705–10.
	3.	 Michelessi M, Lucenteforte E, Oddone F, Brazzelli M, Parravano M, Franchi 

S, et al. Optic nerve head and fiber layer imaging for diagnosing glau‑
coma. version 2. Cochrane Database Syst Rev. 2015;11:CD008803.

	4.	 Sayres R, Taly A, Rahimy E, Blumer K, Coz D, Hammel N, et al. Using a deep 
learning algorithm and integrated gradients explanation to assist grading 
for diabetic retinopathy. Ophthalmology. 2019;126(4):552–64.

	5.	 Burlina PM, Joshi N, Pekala M, Pacheco KD, Freund DE, Bressler NM. Auto‑
mated grading of age-related macular degeneration from color fundus 
images using deep convolutional neural networks. JAMA Ophthalmol. 
2017;135:1170–6.

	6.	 Milea D, Najjar RP, Zhubo J, Ting D, Vasseneix C, Xu X, et al. Artificial intel‑
ligence to detect papilledema from ocular fundus photographs. N Engl J 
Med. 2020;382:1687–95.

	7.	 Li Z, He Y, Keel S, Meng W, Chang RT, He M. Efficacy of a deep learning 
system for detecting glaucomatous optic neuropathy based on color 
fundus photographs. Ophthalmology. 2018;125(8):1199–206.

	8.	 Asaoka R, Murata H, Hirasawa K, Fujino Y, Matsuura M, Miki A, et al. Using 
deep learning and transfer learning to accurately diagnose early-onset 
glaucoma from macular optical coherence tomography images. Am J 
Ophthalmol. 2019;198:136–45.

	9.	 Christopher M, Belghith A, Weinreb RN, Bowd C, Goldbaum MH, Saunders 
LJ, et al. Retinal nerve fiber layer features identified by unsupervised 
machine learning on optical coherence tomography scans predict glau‑
coma progression. Invest Ophthalmol Vis Sci. 2018;59(7):2748–56.

	10.	 An G, Omodaka K, Hashimoto K, Tsuda S, Shiga Y, Takada N, et al. 
Glaucoma Diagnosis with Machine Learning Based on Optical 
Coherence Tomography and Color Fundus Images. J Healthc Eng. 
2019;2019:4061313. https://​doi.​org/​10.​1155/​2019/​40613​13.

	11.	 Ting DSW, Cheung CY, Lim G, Tan GSW, Quang ND, Gan A, et al. Develop‑
ment and validation of a deep learning system for diabetic retinopathy 
and related eye diseases using retinal images from multiethnic popula‑
tions with diabetes. JAMA. 2017;318:2211–23.

	12.	 Hemelings R, Elen B, Barbosa-Breda J, Blaschko MB, De Boever P, Stalmans 
I. Deep learning on fundus images detects glaucoma beyond the optic 
disc. Sci Rep. 2021;11(1):20313.

	13.	 Nakahara K, Asaoka R, Tanito M, Shibata N, Mitsuhashi K, Fujino Y, et al. 
Deep learning-assisted (automatic) diagnosis of glaucoma using a smart‑
phone. Br J Ophthalmol. 2022;106:587–92.

https://doi.org/10.1186/s12886-022-02730-2
https://doi.org/10.1186/s12886-022-02730-2
https://doi.org/10.1155/2019/4061313


Page 12 of 12Hung et al. BMC Ophthalmology          (2022) 22:483 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	14.	 Lee J, Kim YK, Jeoung JW, Ha A, Kim YW, Park KH. Machine learning 
classifiers-based prediction of normal-tension glaucoma progression in 
young myopic patients. Jpn J Ophthalmol. 2020;64(1):68–76.

	15.	 Seo SB, Cho HK. Deep learning classification of early normal-tension 
glaucoma and glaucoma suspects using Bruch’s membrane opening-
minimum rim width and RNFL. Sci Rep. 2020;10:19042.

	16.	 Tan M, Le QV. Efficientnet: Rethinking model scaling for convolutional 
neural networks. 2019 URL: https://​arxiv.​org/​abs/​1905.​11946.

	17.	 Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L. "ImageNet: A large-scale 
hierarchical image database," 2009 IEEE Conference on Computer Vision 
and Pattern Recognition. 2009. pp. 248-255. https://​doi.​org/​10.​1109/​
CVPR.​2009.​52068​48.

	18.	 Perez L, Wang, J.The Effectiveness of Data Augmentation in Image Classi‑
fication using Deep Learning. 2017 URL: https://​arxiv.​org/​abs/​1712.​04621.

	19.	 Kingma DP, Ba J. Adam : A Method for Stochastic Optimization. Interna‑
tional Conference on Learning Representations, 2014. arXiv:​1412.​6980.

	20.	 Smith LN, A disciplined approach to neural network hyper-parameters 
: Part 1—learning rate, batch size, momentum, and weight decay.arXiv 
e-prints, 2018: p.arXiv:​1803.​09820.

	21.	 Huang G, Li Y, Pleiss G, Liu Z, Hopcroft JE, Weinberger KQ. Snapshot 
Ensembles: Train 1, get M for free. 2017. ArXiv, abs/1704.00109.

	22.	 Hollands H, Johnson D, Hollands S, Simel DL, Jinapriya D, Sharma S. Do 
findings on routine examination identify patients at risk for primary 
open-angle glaucoma? the rational clinical examination systematic 
review. JAMA. 2013;309(19):2035–42.

	23.	 Marcus MW, de Vries MM, Junoy Montolio FG, Jansonius NM. Myopia as 
a risk factor for open-angle glaucoma: a systematic review and meta-
analysis. Ophthalmology. 2011;118(10):1989-1994.e2.

	24.	 Zhang N, Wang J, Chen B, Li Y, Jiang B. Prevalence of primary angle clo‑
sure glaucoma in the last 20 years: a meta-analysis and systematic review. 
Front Med (Lausanne). 2021;7:62417.

	25.	 Singh A, Dutta MK, Partha Sarathi M, Uher V, Burget R. Image process‑
ing based automatic diagnosis of glaucoma using wavelet features of 
segmented optic disc from fundus image. Comput Methods Programs 
Biomed. 2016;124:108–20.

	26.	 Chakrabarty L, Joshi GD, Chakravarty A, Raman GV, Krishnadas SR, Sivas‑
wamy J. Automated detection of glaucoma from topographic features 
of the optic nerve head in color fundus photographs. J Glaucoma. 
2016;25:590–7.

	27.	 Issac A, Partha Sarathi M, Dutta MK. An adaptive threshold based image 
processing technique for improved glaucoma detection and classifica‑
tion. Comput Methods Programs Biomed. 2015;122:229–44.

	28.	 Christopher M, Belghlith A, Bowd C, Proudfoot JA, Goldbaum MH, 
Weinreb RN, et al. Performance of deep learning architectures and 
transfer learning for detecting glaucomatous optic neuropathy in fundus 
photographs. Sci Rep. 2018;8(1):16685.

	29.	 Ishii K, Asaoka R, Omoto T, Mitaki S, Fujino Y, Murata H, et al. Predicting 
intraocular pressure using systemic variables or fundus photography with 
deep learning in a health examination cohort. Sci Rep. 2021;11(1):3687. 
https://​doi.​org/​10.​1038/​s41598-​020-​80839-4.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://arxiv.org/abs/1905.11946
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://arxiv.org/abs/1712.04621
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1803.09820
https://doi.org/10.1038/s41598-020-80839-4

	Application of a deep learning system in glaucoma screening and further classification with colour fundus photographs: a case control study
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Methods
	Patient

	Results
	Discussion
	Conclusions
	Acknowledgements
	References


