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Abstract 

Background Diabetic retinopathy (DR) is one of the most common microvascular complications of diabetes and 
causes of blindness in developed countries. Our study was designed to identify immune-related genes involved in the 
progression of proliferative diabetic retinopathy (PDR).

Methods The “GSE102485” dataset of neovascular membrane samples (NVMs) from type 1 and 2 diabetes mellitus 
patients was downloaded from the Gene Expression Omnibus database. Functional enrichment analyses, protein–
protein interaction network (PPI) construction, and module analysis of immune pathways in NVMs and controls were 
conducted via Gene Set Enrichment Analysis and Metascape.

Results The significantly upregulated hallmark gene sets in DR2 and DR1 groups were involved in five immune 
pathways. Only CCR4, CXCR6, C3AR1, LPAR1, C5AR1, and P2RY14 were not previously reported in the context of PDR 
molecular pathophysiology. Except for P2RY14, all of the above were upregulated in retinal samples from experimen-
tal diabetes mouse models and human retina microvascular endothelial cells (HRMECs) treated with high glucose 
(HG) by quantitative Real Time Polymerase Chain Reaction (qRT-PCR).

Conclusion The genes identified herein provide insight into immune-related differential gene expression during DR 
progression.
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Background
Diabetic retinopathy (DR), resulting from chronic hyper-
glycemia, is one of the most common microvascular 
complications of diabetes and causes of blindness among 
adults aged between 20 and 74 in developed countries [1, 
2]. Depending on the degree of related ischemic injury 
and microvascular lesions, DR can be divided into two 
phases, non-PDR (proliferative diabetic retinopathy) and 
PDR [3]. DR is recognized as a microvascular, inflamma-
tory, and neurodegenerative complication of diabetes [4], 
which can be triggered by mitochondrial damage, endo-
plasmic reticulum stress, and oxidative stress, among 
others [5]. However, the pathogenesis of DR has not been 
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fully elucidated. Inflammation and angiogenesis play key 
roles during DR pathogenesis [6]. Thus, the morphologi-
cal and molecular alterations in DR caused by these two 
processes are receiving great attention, becoming the 
focus of extensive research [7, 8].

Chronic low-grade inflammation is present during both 
the early and advanced stages of DR, eventually result-
ing in retinal vasculopathy, which is characterized by 
increased retinal vascular permeability and neovasculari-
zation [9, 10]. Inflammation is undoubtedly implicated in 
the dysregulated pathological angiogenesis during early 
and advanced stages of DR [11]. Neovascularization and 
inflammation share several common mediators and sign-
aling pathways [11, 12]. Inflammatory responses drive 
angiogenic processes through the production of pro-
angiogenic cytokines and growth factors [11–13].

Shao et al. identified a subset of differentially expressed 
genes (DEGs) from both active and inactive fibrovascu-
lar membranes (FVMs) with normal retinas, which were 
enriched for angiogenic factors [hypoxia inducible fac-
tor-1 subunit alpha (HIF-1α) and placental growth factor 
(PGF)] [14]. Pathological secretion of vascular endothe-
lial growth factor A was shown to promote the expres-
sion of pro-angiogenic transcription factors and growth 
factors, which in turn induced retinal neovascularization 
[15]. In the present study, we first analyzed an RNA-seq 
dataset of NVMs from PDR patients from the GEO data-
base. We identified genes associated with the immune 
system in order to elucidate the role of inflammatory pro-
cesses during DR pathogenesis and identify novel diag-
nostic and therapeutic markers for DR.

Methods
Dataset
The clinical sample dataset “GSE102485” was down-
loaded from GEO (http:// www. ncbi. nlm. nih. gov/ geo/). 
Twenty-five samples from “GSE102485” were analyzed, 
including 19 samples of type 2 DR, three from type 1 DR, 
and three normal retina samples.

Data grouping
The 25 samples were of NVMs from PDR and were 
divided into three paired groups: DR2 group (type 2 PDR 
and normal retina), DR1 group (type 1 PDR and normal 
retina), and DR2 VS DR1 group (type 2 PDR and type 1 
PDR).

Gene set enrichment analysis (GSEA)
The DR2 and the DR1 groups were respectively subjected 
to GSEA. GSEA was implemented to detect the enriched 
gene sets for the two paired groups respectively, so as to 
identify the potential hallmarks of DR. The annotated 
gene sets of “h.all.v7.2.symbols.gmt” in the Molecular 

Signatures Database (MSigDB) were selected in GSEA 
version 4.0.3, and 1000 times of permutations were con-
ducted. Collapse dataset of gene symbols was termed as 
“no-Collapse”, and the permutation type was “phenotype”. 
The cut-off criteria for GSEA were as follows: normal-
ized enrichment scores (NES) > 1.0; false discovery rate 
(FDR) q< 0.25; nominal p < 0.05. The minimum number 
of 15 genes and maximum 500 genes were set by default. 
All significantly enriched immune-related hallmark gene 
sets were collected and displayed via enrichment plots. 
Immune-related hub genes in the DR2 and DR1 groups 
were then identified using Kyoto Encyclopedia of Genes 
and Genomes (KEGG) and Gene Ontology (GO) enrich-
ment analyses.

Metascape hub gene analysis
Metascape (http:// metas cape. org) is a free website analy-
sis tool for gene function annotation and pathway enrich-
ment analysis [16]. We used it for process enrichment as 
well as pathway and protein–protein interaction (PPI) 
enrichment analysis of immune-related hub gene sets. 
The highest-scoring genes in both groups were presented 
in Venn diagrams (http:// bioin forma tics. psb. ugent. be/ 
webto ols/ Venn/).

Animal model and HRMECs culture
Adult C57Bl/6 J mice (male, 8 weeks old, 10–22 g), 
provided by the Laboratory Animal Center, Nanjing 
Medical University, were used in this study. Animal 
experiments were performed in accordance with the 
criteria of the National Institutes of Health guide for 
the care and use of laboratory animals as well as the 
ARRIVE guidelines. The Ethics Committee of the Affili-
ated Jinling Hospital of Nanjing University approved 
the study protocol (2021JLHDWLS-007). After hous-
ing for 24–36 h, mice were intraperitoneally admin-
istered streptozotocin (Sigma, 0.1 mg per 10 g of 
bodyweight) in citrate saline. Mice with blood glucose 
levels over 16.7 mmol/L for two consecutive weeks 
were considered diabetic. After 4 months, diabetic 
and age-matched non-diabetic mice were sacrificed via 
excessive intraperitoneal injection of the mixture of 
ketamine and xylazine, both eyes of each mouse were 
enucleated, and retinas were detached. Retinal sam-
ples were then moved and subjected to cryopreserva-
tion. HRMECs were purchased from American Type 
Culture Collection (ATCC, U.S.A.). HRMECs were 
cultured in endothelial cell medium (ECM, Gibco) sup-
plemented with 10% fetal bovine serum (FBS, Gibco, 
U.S.A.), penicillin and streptomycin (100 U/ml) at 
37 °C under 5%  CO2. To detect the effect of glucose 
on HRMECs, the medium was further supplemented 
with high concentration of glucose (35.5 mM; HG) 

http://www.ncbi.nlm.nih.gov/geo/)%20database
http://metascape.org/
http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
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and normal concentration of glucose (5.5 mM; NG) for 
24 h,respectively.

RNA isolation and qRT‑PCR
Total RNA was extracted from the retinal tissue of dia-
betic retinopathy mouse models using TRIzol reagent 
(Invitrogen). Total RNA was then reverse-transcribed 
using a PrimeScript RT reagent Kit (Takara). Glycer-
aldehyde-3-phosphate dehydrogenase (GAPDH) was 
detected as an internal control.

Total RNA of HRMECs was extracted using TRIzol 
reagent (Invitrogen), and was then reverse-transcribed 
using a PrimeScript RT reagent Kit (Takara). The cDNA 
was used as the template for qRT-PCR. respectively. 
Actin beta (ACTB) was detected as an internal control.

The reaction mixture (20 μL) contained 1 μL cDNA 
template, 2 μL (10 μM) each of sense and antisense 
primers (designed by Primer6, Table  1), 0.1% DEPC 
7 μL, and 10 μL Real-time PCR Master Mix (SYBR 
Green). qRT-PCR was performed on an ABI Step one 
plus qRT-PCR system (Applied Biosystems). qRT-PCR 
was performed in duplo for each sample, and disso-
ciation curves were used to estimate the specificity of 
qRT-PCR products.

Statistical analysis
Data were analyzed using the unpaired Student’s t-test 
and one-way ANOVA for multiple comparisons in 
Graphpad Prism 8. Data were presented as an average 
of 6 SEM, unless indicated otherwise. Statistical signif-
icance was set at p < 0.05.

Results
Enrichment of immune‑related gene sets
In the DR2 phenotype, 46 out of 50 gene sets were upreg-
ulated, and 13 were significantly enriched, with a nominal 
p < 0.05, NES > 1.0, and FDR q<0.25. In the DR1 pheno-
type, 39 out of 50 gene sets were upregulated, and 11 were 
significantly enriched. All gene sets of the two groups are 
shown in Table  2 (DR2) and Table  3 (DR1). In the DR2 
VS DR1 group, 28 out of 50 gene sets were upregulated 
in type 2 PDR, while 0 were significantly enriched, with 
a nominal p < 0.05, NES > 1.0, and FDR q<0.25. Twenty-
two out of 50 gene sets were upregulated in type 1 PDR, 
and 0 were significantly enriched, with a nominal p < 0.05, 
NES > 1.0, and FDR q<0.25. There were no significantly 
enriched gene sets between the type 2 and type 1 PDR 
groups. Significantly upregulated immune-related hall-
mark gene sets in the DR2 and DR1 groups are shown in 
Fig. 1 (DR2) and Fig. 2 (DR1): INTERFERON_GAMMA_
RESPONSE, INTERFERON_ALPHA_RESPONSE, 
IL6_JAK_STAT3_SIGNALING, INFLAMMATORY_
RESPONSE, IL2_STAT5_SIGNALING.

GO and KEGG enrichment analyses of all immune-
related hub genes.

GO functional and KEGG pathway enrichment analy-
ses of all immune-related hub genes for the DR2 and DR1 
groups were carried out in Metascape.

The overlaps in these gene lists were significantly 
improved by considering overlaps between genes sharing 
the same enriched ontology terms. Circus plots for DR2 
and DR1 are shown in Fig. 3 (A, B) and Table 4.

The top 20 GO enriched terms for the DR2 group are 
shown in Fig.  4, separated into biological process (17 
items), molecular function (2 items), and cellular com-
ponent (1 item) categories. For biological process, the 

Table 1 Gene primer information of diabetic retinopathy mouse models and HRMECs

Gene Forward Primer Reverse Primer

Gene primer information of diabetic retinopathy mouse models

 C5ar1 CAT ACC TGC GGA TGG CAT TCA GGA ACA CCA CCG AGT AGA TGAT 

 CXCR6 GAG TCA GCT CTG TAC GAT GGG TCC TTG AAC TTT AGG AAG CGTTT 

 C3AR1 TCG ATG CTG ACA CCA ATT CAA TCC CAA TAG ACA AGT GAG ACCAA 

 LPAR1 AGC CAT GAA CGA ACA ACA GTG CAT GAT GAA CAC GCA AAC AGTG 

 P2RY14 AGC AGA TCA TTC CCG TGT TGT AGC CAC CAC TAT GTT CTT GAGA 

 CCR4 GGA AGG TAT CAA GGC ATT TGGG GTA CAC GTC CGT CAT GGA CTT 

Gene primer information of HRMECs

 C5ar1 CCA TCC ATC CAT CCA TCC ATC CAT C GAG GCA GGA GAA TCG CTT GAACC 

 CXCR6 TGC CAC TGC TCA CCA TGA TTGTC GGA ACA CAG CCA TCA CCA GGAAG 

 C3AR1 TGA AGA TGC AGC GGA CAG TGAAC GCC AAG TGA GCC AGC GAG AAG 

 LPAR1 TTC AAG CGA TTC TCC TGC CTA AGC TTC AAG ACC AGC CTG ACC AAC ATG 

 P2RY14 TCC CTC TAC ACA CTG CTT TGA ATG C ACT GAA CAA CCT GCT CCT GAA TGA C

 CCR4 GGC TCA AGT GAT CCT CCC TCCTC CCA CCA CCA CAC ACC CAA TGC 
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enriched GO terms included 0002237 (response to mol-
ecule of bacterial origin), 0032103 (positive regulation 
of response to external stimulus), 0046649 (lymphocyte 
activation), 0002274 (myeloid leukocyte activation), 
0002521 (leukocyte differentiation), 0001819 (positive 
regulation of cytokine production), 0002697 (regulation 
of immune effector process), 0098542 (defense response 
to other organism), 0034341 (response to interferon-
gamma), 0002253 (activation of immune response), 
0060759 (regulation of response to cytokine stimu-
lus), 0034612 (response to tumor necrosis factor), 

0050730 (regulation of peptidyl-tyrosine phosphoryla-
tion), 0043068 (positive regulation of programmed cell 
death), 0008285 (negative regulation of cell proliferation), 
0050900 (leukocyte migration), and 0006875 (cellular 
metal ion homeostasis). For molecular function, there 
were two GO terms, namely 0005126 (cytokine recep-
tor binding) and 0004896 (cytokine receptor activity). 
0098552 (side of membrane) was the only enriched GO 
item in the cellular component category in DR2.

The top 20 KEGG pathways identified for the DR2 
group are shown in Fig.  4 (C, D), including hsa04080 

Table 2 GSEA pathways up-regulated and down-regulated due to DR2 group

Gene sets SIZE NES NOM p‑val FDR
q‑val

Up-regulated gene sets in DR2 group

 HALLMARK_INTERFERON_GAMMA_RESPONSE 194 1.78 0.000 0.000

 HALLMARK_COAGULATION 133 1.69 0.000 0.000

 HALLMARK_INTERFERON_ALPHA_RESPONSE 95 1.69 0.000 0.000

 HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION 198 1.68 0.000 0.000

 HALLMARK_ANGIOGENESIS 36 1.67 0.000 0.000

 HALLMARK_IL6_JAK_STAT3_SIGNALING 83 1.62 0.000 0.000

 HALLMARK_INFLAMMATORY_RESPONSE 198 1.56 0.000 0.000

 HALLMARK_ALLOGRAFT_REJECTION 195 1.53 0.000 0.000

 HALLMARK_COMPLEMENT 198 1.38 0.000 0.042

 HALLMARK_TNFA_SIGNALING_VIA_NFKB 199 1.37 0.000 0.075

 HALLMARK_IL2_STAT5_SIGNALING 197 1.35 0.000 0.085

 HALLMARK_XENOBIOTIC_METABOLISM 198 1.26 0.000 0.234

 HALLMARK_APOPTOSIS 158 1.25 0.000 0.244

Down-regulated gene sets in the DR2 group

 HALLMARK_PANCREAS_BETA_CELLS 40 −1.91 0.000 0.000

Table 3 GSEA pathways up-regulated and down-regulated due to DR1 group

Gene sets SIZE NES NOM p‑val FDR q‑val

Up-regulated gene sets in DR1 group

 HALLMARK_COAGULATION 133 2.17 0.000 0.000

 HALLMARK_IL2_STAT5_SIGNALING 197 1.81 0.000 0.122

 HALLMARK_ANGIOGENESIS 36 1.69 0.000 0.135

 HALLMARK_IL6_JAK_STAT3_SIGNALING 83 1.68 0.000 0.116

 HALLMARK_INFLAMMATORY_RESPONSE 198 1.68 0.000 0.102

 HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION 198 1.68 0.000 0.090

 HALLMARK_KRAS_SIGNALING_UP 194 1.58 0.000 0.130

 HALLMARK_ALLOGRAFT_REJECTION 195 1.54 0.000 0.118

 HALLMARK_INTERFERON_GAMMA_RESPONSE 194 1.47 0.000 0.135

 HALLMARK_APICAL_SURFACE 44 1.44 0.000 0.150

 HALLMARK_INTERFERON_ALPHA_RESPONSE 95 1.37 0.000 0.173

Down-regulated gene sets in the DR1 group

 HALLMARK_PANCREAS_BETA_CELLS 40 −1.67 0.000 0.187

 HALLMARK_SPERMATOGENESIS 131 − 1.46 0.000 0.211
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(Neuroactive ligand-receptor interaction), ko05150 
(Staphylococcus aureus infection), ko05323 (Rheuma-
toid arthritis), ko04064 (NF-kappa B signaling path-
way), ko05144 (Malaria), ko04640 (Hematopoietic cell 
lineage), ko04650 (Natural killer cell mediated cyto-
toxicity), ko04672 (Intestinal immune network for 
IgA production), ko05145 (Toxoplasmosis), ko04060 
(Cytokine–cytokine receptor interaction), hsa05202 
(Transcriptional misregulation in cancer), hsa04668 
(TNF signaling pathway), hsa04630 (JAK-STAT signal-
ing pathway), hsa05162 (Measles), hsa05169 (Epstein-
Barr virus infection), hsa05163 (human cytomegalovirus 
infection), ko04380 (Osteoclast differentiation), hsa04062 
(Chemokine signaling pathway), ko05132 (Salmonella 
infection), and hsa05205 (Proteoglycans in cancer).

The 20 most enriched GO items for the DR1 group are 
shown in Fig. 5 (A, B). For biological process (17 items), 
these included 0002697 (regulation of immune effec-
tor process), 0009617 (response to bacterium), 0001819 
(positive regulation of cytokine production), 0007159 
(leukocyte cell-cell adhesion), 0032103 (positive regula-
tion of response to external stimulus), 0002274 (mye-
loid leukocyte activation), 0008285 (negative regulation 
of cell proliferation), 0031349 (positive regulation of 
defense response), 0060759 (regulation of response to 

cytokine stimulus), 0034341 (response to interferon-
gamma), 0060337 (type I interferon signaling pathway), 
0050730 (regulation of peptidyl-tyrosine phosphoryla-
tion), 0043410 (positive regulation of MAPK cascade), 
0009611 (response to wounding), 0050900 (leukocyte 
migration), 0043068 (positive regulation of programmed 
cell death), and 0006875 (cellular metal ion homeostasis). 
For molecular function, there was only one item, GO: 
0004896 (cytokine receptor activity). For cellular compo-
nent, there were two enriched GO items, 0098552 (side 
of membrane) and 0043235 (receptor complex).

The top 20 KEGG pathways in the DR1 group are 
shown in Fig. 5 (C, D), including hsa05166 (Human T-cell 
leukemia virus 1 infection), ko04672 (Intestinal immune 
network for lgA production), ko04064 (NF-kappa B sign-
aling pathway), ko05144 (Malaria), ko05321 (Inflam-
matory bowel disease), ko04151 (PI3K-Akt signaling 
pathway), hsa05205 (Proteoglycans in cancer), ko05202 
(Transcriptional misregulation in cancer), ko04060 
(Cytokine–cytokine receptor interaction), hsa04630 
(JAK-STAT signaling pathway), ko04640 (Hematopoi-
etic cell lineage), hsa04668 (TNF signaling pathway), 
hsa05169 (Epstein-Barr virus infection), ko05164 (Influ-
enza A), hsa04062 (Chemokine signaling pathway), 
ko05132 (Salmonella infection), ko04920 (Adipocytokine 

Fig. 1 Significant immune-related gene expression in the DR2 group was analyzed via GSEA
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Fig. 2 Significant immune-related gene expression in the DR1 group was analyzed via GSEA

Fig. 3 Overlaps including the shared term level, where the blue curves link genes with the same enriched ontology term for DR2 (A) and DR1 (B). 
The inner circles represent gene lists, where hits are shown along the arc. Multiple gene lists were colored in dark orange, while unique gene lists 
are shown in light orange
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signaling pathway), hsa04217 (necroptosis), hsa05170 
(human immunodeficiency virus 1 infection), and 
hsa04080 (Neuroactive ligand-receptor interaction).

PPI analysis of immune‑related gene sets
PPI analysis was performed using Metascape. The PPI 
network and the top three MCODE components were 
identified for DR2 (Fig. 6A, B) and DR1 (Fig. 6C, D) gene 
sets. The significant MCODE components were involved 
in the chemokine signaling pathway and cytokine–
cytokine receptor interaction in the PPI network. The 
17 genes with highest scores in both groups were CCR1, 
CCR7, CCL5, CCL20, CXCL1, CXCL3, CXCL8, CXCL9, 
CXCL10, FPR1, GNAI3, CCR4, CXCR6, C3AR1, LPAR1, 
C5AR1, and P2RY14.

qRT‑PCR analysis of diabetic mouse retinal tissue 
and HRMECs treated with HG
qRT-PCR results indicated that the expression of CCR4, 
C5ar1, CXCR6, C3AR1, and LPAR1 was upregulated in 
both diabetic retina (DR) and HRMECs treated with HG, 
when compared to expression in the naive retina (NR) 
and NG. Notably, P2RY14 was significantly downregu-
lated (Fig. 7. A, and B, p < 0.05).

Discussion
In this study, we first separately analyzed immune-
related gene expression in NVMs from PDR of both types 
in order to narrow down and identify potential genes 
implicated in PDR pathogenesis. The most significantly 
enriched pathways were mainly implicated in chemokine 
signaling and cytokine-cytokine receptor interac-
tions. The current study provides better insight into the 
immune mechanisms underlying DR progression, with 
potential implications for diagnosis and treatment.

Chemokines are critical mediators of immune cell 
migration, with essential roles in immune surveillance, 
development, and inflammation. Chemokines exert their 
effects via transmembrane G protein-coupled receptors 
(GPCRs) present on a wide variety of cell types. Upon 
binding, conformational changes in trimeric G proteins 
trigger intracellular signaling pathways, promoting cel-
lular movement and activation [17]. Based on the loca-
tions of conserved cysteine residues near the amino 
terminus, chemokines are divided into four subfamilies: 
C-C chemokine motif receptor (CCR), C-X-C chemokine 
motif receptor (CXCR), CX3CR, and XCR [18]. GPCRs 
regulate leukocyte trafficking and promote immune 
responses, mediating cell chemotaxis. GPCRs can be 
categorized into classical and chemokine subfamilies 
according to the ligand source. Classical GPCRs include 
formyl peptide receptors (FPR1, FPR2, and FPR3), plate-
let-activating factor receptor (PAFR), activated comple-
ment component 5 receptor (C5aR), and leukotriene B4 
receptors (BLT1 and BLT2) [19].

In our study, 11 chemokines and their cognate recep-
tors were identified as related to the pathogenesis of DR, 
including CCR1, CCR7, CCL5, CCL20, CXCL1, CXCL3, 
CXCL8, CXCL9, CXCL10, FPR1, and GNAI3.

CSF3, COL18A1, CXCR2, CCR1, FGF23, CXCL11, and 
IL13 were previously reported as related to PDR patho-
genesis based on a Laplacian heat diffusion algorithm 
[20]. Therapeutic strategies targeting MIP1γ to inhibit 
CCR1-related signaling in retinal endothelial cells might 
have potential against DR progression [21]. CCR7 sig-
nificantly enhanced neovascularization and the non-
perfusion area in oxygen-induced retinopathy [22]. CCL5 
could be measured in the blood, vitreous body, retina, 
aqueous humor, and tears of patients with DR [23]. C-C-
chemokine receptor 6 is the only receptor interacting 
with CCL20. Treatment with CCL20-neutralizing anti-
bodies or PG inhibits CCL20 expression, alleviating reti-
nal degeneration and inflammation [24]. CCL20, CXCL2, 
and other core genes have been described as playing key 
roles in DR pathogenesis [25]. Activation of the P2X7R-
NLRP3 pathway significantly increased the production 
of TNF-α, CXCL-1, CSF-1, IL-6, IL-1β, IL-18, and other 
pro-inflammatory cytokines in retinal microglia [26]. 
CXCL3, VEGF, CXCL5, and other inflammatory media-
tors were increased in DR and retinopathy of prematurity 
[27]. CXCL8 (also known as IL-8) is known to be elevated 
in the vitreous humor of patients with DR [28, 29]. Auto-
crine CXCL9 and CXCL10 signaling in retinal endothelial 
cells were enhanced in DR [30]. Recent research sug-
gests that the level of CXCL10/IP-10 in normal vitreous 
humor was significantly higher than that in serum. Fur-
ther, CXCL10/IP-10 levels in the vitreous humor of pro-
liferative vitroretinopathy and PDR patients were much 

Table 4 Statistics of input gene lists

Name Description Total Unique

The DR2 group

 list1 HALLMARK_IL2_STAT5_SIGNALING 115 115

 list2 HALLMARK_IL6_JAK_STAT3_SIGNALING 62 62

 list3 HALLMARK_INFLAMMATORY_RESPONSE 133 133

 list4 HALLMARK_INTERFERON_ALPHA_RESPONSE 69 69

 list5 HALLMARK_INTERFERON_GAMMA_RESPONSE 149 149

The DR1 group

 list1 HALLMARK_IL2_STAT5_SIGNALING 115 115

 list2 HALLMARK_IL6_JAK_STAT3_SIGNALING 58 58

 list3 HALLMARK_INFLAMMATORY_RESPONSE 125 125

 list4 HALLMARK_INTERFERON_ALPHA_RESPONSE 72 72

 list5 HALLMARK_INTERFERON_GAMMA_RESPONSE 141 141
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higher than that in patients with rhegmatogenous retinal 
detachment. CXCL10/IP-10 was also significantly upreg-
ulated in patients with active PDR compared to those 
with inactive disease [31]. CXCL10 derived from plate-
let-rich plasma exosomes can cause retinal endothelial 
injury, which was considerably alleviated by antagoniz-
ing CXCL10 with a neutralizing antibody [32]. UPARAR 
is a peptide inhibitor of the uPAR system, which could 
reverse the upregulation of uPAR, FPR1, and FPR2, thus 
slowing DR development [33]. The GαI1/3 protein plays 
a key role in vascular endothelial growth factor-induced 
endocytosis, signal transduction, and angiogenesis. High 
GαI1/3 protein expression was previously reported in the 
proliferative retinal tissue of PDR patients [34].

CCR4, CXCR6, C3AR1, LPAR1, C5AR1, and P2RY14 
have been implicated in a number of eye diseases, but not 
in PDR. Upregulated CCR4 expression was previously 
observed in keratoconjunctivitis, glaucoma, and uveitis 
[35–37], in addition to its downregulation in dry eyes 
[38]. The IFN-γ and IL-17 expression of  CD4+ T cells 

was significantly increased in patients with age-related 
macular degeneration. IFN-γ-expressing Th1 cells and 
IL-17-expressing Th17 cells could be selectively enriched 
based on the expression of surface  CCR3+,  CCR4+, 
 CCR6+ [39]. CXCR6 was upregulated in the primary 
culture of orbital fibroblasts from patients with Graves’ 
orbitopathy, following treatment with pro-inflammatory 
cytokines IL-1β and TNF-α [40]. Furthermore, CXCR6 
expression was highly confined to memory Th1 cells, 
which can be categorized into activated memory Th1 
and Tc1 cells secreting IFN-γ [41]. A previous study 
reported that  CD4+ and  CXCR6+ cells were decreased in 
T1D patients [42]. A possible reason for the reduction in 
 CD4+ cells expressing CXCR6, CXCR3, and CCR5 could 
be the selective recruitment of Th1 cells into the pan-
creas [43]. In human T cells, intracellular C5AR1 signal-
ing induces ROS production through the mitochondria. 
ROS in turn trigger assembly of the NLRP3 (NACHT, 
leucine-rich repeat and pyrin domain-containing pro-
tein 3) inflammasome. Inflammasome formation initiates 

Fig. 4 Enrichment analysis of immune-related gene lists in the DR2 group. A: Heatmap of enriched GO terms colored based on p-value. B: Network 
of enriched GO terms colored based on p-value, with terms containing more genes tending to have more significant p-values. C: Heatmap of 
enriched KEGG terms colored based on p-value. D: Network of enriched KEGG terms colored based on p-value
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caspase-1-dependent IL-1β secretion, which promotes 
IFN-γ production and Th1 differentiation in an autocrine 
manner. Secreted C5a/C5a-Desarg interacts with sur-
face-expressed C5AR2, which negatively controls NLRP3 
activation through a currently undetermined mechanism 
[44]. Further, there is growing evidence that microglia-
mediated inflammatory responses are associated with 
deleterious effects implicated in DR [7]. In fact, increased 
hypertrophic amoeba-like microglia were observed in the 
outer retina and subretinal space of human DR patients 
[45]. Overactivated amoeba-like microglia lead to a dys-
regulation of the complement system by upregulating 
the expression of activators C3, CFB, C1q, and C5AR1, 
while downregulating that of complement inhibitors 
CFH, CFI, CD46, and CD93 [46]. Subsequently, micro-
glial overactivation establishes a pro-inflammatory 
environment conducive to further invasion of retinal 
microglia and exogenous monocyte infiltration [47]. The 
accumulation of subretinal microglia derived paracrine 
factors can trigger NLRP3 inflammasome activation in 
the retinal pigment epithelium [48]. Studies previously 
showed that complement may modulate the production 

of inflammatory factors and angiogenic factors via C5AR 
on Müller cells, which are implicated in DR pathogen-
esis [49]. C3AR1 is considered an injury-induced neu-
roinflammatory factor, whose interaction with IL-10 
signaling and other immune-related pathways might be 
a major regulator of microglial activity and neuroinflam-
matory function [50]. In DBA/2 J mice, significant dam-
age occurred with in the optic nerve head (ONH) prior to 
in other regions of the optic nerve [51]. At the same time 
point, the expression of C3AR1 in the ONH increased, 
with no increase observed in the retina [52]. In healthy 
brains, cell types other than the microglia exhibited low 
or no expression of C3AR1 [53]. The involvement of 
C3AR1/C5AR1 signaling in angiogenesis was reported on 
day 5 in ocular and retinal angiogenesis neonatal mouse 
models [54]. In our study, the sampled area included the 
area around the optic nipple. Previous works have shown 
that six G-coupled protein receptors (LPAR1–6) can be 
activated by lysophosphatidic acid (LPA). LPA and its 
receptors play vital roles in the central nervous system, 
cancer, and macular edema [55]. A link between LPA and 
retinopathy was previously demonstrated, as LPA1 and 

Fig. 5 Enrichment analysis of immune-related gene lists in the DR1 group. A: Heatmap of enriched GO items colored based on p-value. B: Network 
of enriched GO terms colored based on p-value, where terms containing more genes tend to have more significant p-values. C: Heatmap of 
enriched KEGG items colored based on p-values. D: Network of enriched KEGG terms colored based on p-value
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LPA2 expression were significantly increased in retinal 
ganglion cells after retinal ischemia in adult rats, lead-
ing to LPA1-mediated retinal ganglion cell death in pre-
term infants. In contrast, LPAR1–3 expression of retinal 
pigment epithelial cells promoted retinal healing. It was 
suggested that LPA exerts either a neuroprotective or 
neurodegenerative effect on the retina by binding to dif-
ferent LPA receptors on different cell types [56]. ATX, 
AGK, and LPA1 receptors are expressed in vascular 
endothelial cells and stromal cells within PDR epireti-
nal membranes. LPA-producing enzymes or LPA were 
shown to play a key role in the development of PDR and 
PVR [57]. The expression of P2Ry14 (purinergic receptor 
P2Y, G-protein coupled, 14) in the trabecular meshwork 
is higher than that of other purine receptors, suggest-
ing that the protein product reduces IOP in monkeys, 
an observation that has not been further confirmed [58]. 
P2Ry14 was down regulated during both oxygen-induced 

pathologic neovascularization and physiological angio-
genesis of the retina [59]. Purine receptor P2Y14 is highly 
expressed in collecting tube insertion cells and mediates 
renal aseptic inflammation [60].

He et al. previously suggested that differential ALDH2/
SIRT1 expression might be responsible for the differ-
ences in DR severity between chronic inflammation-
related T1 diabetes mellitus and T2 diabetes mellitus. 
Retinal IL-1 and IL-6 production in the T1 diabetes mel-
litus group was significantly increased compared to that 
in the T2 diabetes mellitus group [61]. In our study, we 
found no significantly enriched gene sets between type 1 
and type 2 PDR groups. Li et al. previously reported that 
the prevalence of DR in diabetes patients was affected by 
diabetes duration, diabetic nephropathy occurrence, and 
regular DR screening. Diabetes type indirectly affected 
DR occurrence through its influence on diabetes dura-
tion and diabetic nephropathy occurrence [62].

Fig. 6 The PPI network and MCODE components for the two groups. A: PPI network for the DR2 group. B: The top three enriched MCODE 
components in DR2. C: PPI network for DR1. D: The top three enriched MCODE components
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In the present study, we found that six immune-related 
genes, namely, CCR4, CXCR6, C3AR1, LPAR1, C5AR1, 
and P2RY14, were upregulated based on bioinformat-
ics analysis. CCR4, C5AR1, CXCR6, C3AR1, and LPAR1 
expression was further confirmed via qRT-PCR, which 
was not the case for P2RY14, necessitating further study. 
Moreover, the upregulation of LPAR1 was found to have 
both neuroprotective and PDR promoting properties. 
Therefore, whether LPAR1 acts as a protective or patho-
genic factor in PDR remains unclear.

Conclusion
In summary, our findings provide insight into the molec-
ular pathogenesis of DR, which may be of value for dis-
ease diagnosis and treatment. The roles of P2RY14 and 
LPAR1 in the pathogenesis of DR require further study. 
Our data provide a new idea for the diagnosis and treat-
ment of DR in the future.

In our study, Nevertheless, the current study had some 
limitations, one being the limited number of neovascu-
larization samples from patients with type 1 DR and the 

normal retina samples. We analyzed hub gene expression 
only via qRT-PCR, and it should be further validated via 
western blotting. Meanwhile, the alterations of immune-
elated pathways might be explored in the future.
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