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Abstract 

Background  While deep learning has delivered promising results in the field of ophthalmology, the hurdle to com-
plete a deep learning study is high. In this study, we aim to facilitate small scale model trainings by exploring the role 
of preprocessing to reduce computational burden and accelerate learning.

Methods  A small subset of a previously published dataset containing optical coherence tomography images of cho-
roidal neovascularization, drusen, diabetic macula edema, and normal macula was modified using Fourier transforma-
tion and bandpass filter, producing high frequency images, original images, and low frequency images. Each set of 
images was trained with the same model, and their performances were compared.

Results  Compared to that with the original image dataset, the model trained with the high frequency image dataset 
achieved an improved final performance and reached maximum performance much earlier (in fewer epochs). The 
model trained with low frequency images did not achieve a meaningful performance.

Conclusion  Appropriate preprocessing of training images can accelerate the training process and can potentially 
facilitate modeling using artificial intelligence when limited by sample size or computational power.
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Background
Increased use of artificial intelligence has revolution-
ized the way humans interact with computers [1]. Deep 
learning allows computer algorithms the freedom to 
select features without extensive human input, thereby 
transcending historical roles. In ophthalmology, deep 
learning has been applied across almost all subspecialties 

including retina, glaucoma, neuro-ophthalmology, and 
oculoplastics [2–6]. Specifically, retinal optical coher-
ence tomography images have been tested extensively via 
deep learning to identify diagnoses, clinical features, and 
anatomical retinal layer segmentation [7, 8]. Similar feats 
have been accomplished by dermatologists, using OCT 
images for detection of skin pathologies and layer seg-
mentation [9, 10]. While the potential success of unsu-
pervised learning and deep learning is promising, they 
are not without shortcomings. Although unsupervised 
learning with deep learning provides a significant advan-
tage over prior supervised machine learning approaches 
by allowing for identification of previously unexpected 
features for disease classification [11], an enormous 
amount of resources are required for such analysis. Per-
formance barriers include the need for large training 
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datasets, sophisticated models, and computational power 
availability. Thus, major artificial intelligence studies, par-
ticularly image-based deep learning studies in ophthal-
mology, have been mostly constrained to large academic 
centers or multi-institutional groups, limiting the field’s 
participation in advancement of artificial intelligence 
research. From a practical perspective, many retinal dis-
eases do not meet the threshold for deep learning-based 
analysis due to the relatively limited case numbers. With 
this limitation in mind, the goal of the present study was 
to devise a way in which reasonable deep learning train-
ing can be achieved with lower resources, particularly 
sample size and model complexity. We re-trained a sub-
set of a publicly available dataset of retinal optical coher-
ence tomography (OCT) images using a smaller training 
sample size and a simplified model after preprocessing 
the original images with Fourier transformation and a 
bandpass filter [12]. In particular, images produced by 
high-bandpass filter that contained the finer details of 
the original image as opposed to the gross shape/form 
led to improved performance compared to using the 
original images, especially when the training sample size 
was small. This result suggests that appropriate image 
preprocessing through refinement of features may allow 
the extension of deep learning into areas of rare diseases 
in which sample availability has thus far prohibitively 
excluded its application.

Methods
Image selection and preprocessing
Previously published images by Kermany et. al were 
obtained from a publicly available Mendeley database 
(https://​doi.​org/​10.​17632/​rscbj​br9sj.3) [12]. While the 
original study used multiple images from the same sub-
ject (one eye or both eyes), only the first representative 
image (image -1 as denoted by original authors) was used 
for each subject so that each subject only contributed a 

single image to the training. As such, image -1 did not 
always contain the most representative slice for the cor-
responding pathology (or at all in some cases). However, 
this selection method minimized human subjectivity and 
was more likely to produce a smaller training set that best 
resembled the composition of the original training set. A 
total of 797 choroidal neovascularization (CNV), 768 dia-
betic macular edema (DME), 716 drusen, and 3437 nor-
mal images were used for the analysis. Original images 
were cropped with a python script evenly from all sides 
to 500x500 pixel images containing the fovea, further 
reducing training burden. Fast Fourier transformation 
was applied to all images using fft2() function in numpy.
fft python package. After spatial signals were trans-
formed into frequencies, frequency threshold at which 
high and lower frequencies produced equal spatial sig-
nals was determined empirically for 10 random images. 
The average of the 10 thresholds were used as popula-
tion threshold. For each image transformed to frequency 
domain, all frequencies lower than the threshold was 
inversely transformed back to spatial signals to produce 
the low-frequency image, and all frequencies higher than 
the threshold was inversely transformed back to spatial 
signals to produce the high-frequency image. ifft() func-
tion from numpy.fft package was used for inverse trans-
formation. In doing so, a corresponding low frequency 
image and a corresponding high image were produced 
for any given original image, each carrying roughly half 
of the original features/spatial signals from the original 
image (Fig. 1).

Deep learning and training model
Keras package (version 2.3.1) from python was used for 
deep learning. Publicly available pre-trained VGG16, 
VGG19, ResNet50, and Xception models with additional 
dropout layer (0.5) and dense layer (softmax activation) 
were used for training. VGG16 model consisted of 138M 

Fig. 1  Representative optical coherence tomography images of high-frequency image (left), original image (middle), and low-frequency image 
(right). The same threshold was used for both high-pass and low-pass filter, high frequency and low frequency images together represents all 
features of the original image
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parameters and a depth of 16, VGG19 model consisted 
of 144M parameters and depth of 19, ResNet50 model 
consisted of 26M parameters and a depth of 107 (with 
skip connections), and Xception model consisted of 23M 
parameters and depth of 81 (with separable convolutional 
layers). Further details of the models can be found on the 
Keras official site (https://​keras.​io/​api/​appli​catio​ns/). 
The models were fit using weighted training to account 
for an imbalanced training set, and fitting hyperparam-
eters were set to a learning rate of 0.005, decay of 1x10-6, 
momentum of 0.9, batch size of 5, and epochs of 25. 
Each training dataset – original images, high frequency 
images, and low frequency images – was trained individ-
ually with training, validation, and testing splits at a 6:2:2 
ratio. For each model, Area-Under-the-Curve (AUC) 
was calculated for each pathology (against the rest) using 
the OneVsRestClassifier() function from sklearn.metrics 
python package as a measure of performance. Additional 
testing with the traditional training, validation, and test-
ing splits at an 8:1:1 ratio was done using the VGG16 
base-model to study the effect of larger training sam-
ple size. GPUtil module on python was used to monitor 
graphics processing unit (GPU) and memory load during 
preprocessing and model training.

Results
Using the VGG16-base model and smaller training sam-
ple size (60% of dataset), the original images achieved 
a final average AUC of 0.687, and the high frequency 
images achieved a higher final average AUC of 0.765. 
In contrast, the low frequency images had a final aver-
age AUC of 0.372 (Fig. 2 and Table 1). Confusion matrix 
showed that while the high frequency image-based model 
identified all pathologies with relatively high accuracy, 
comparable accuracies were achieved by the original 
image-based model only in the setting of high false posi-
tive rates (Supplemental Table  1). Furthermore, the use 
of high-frequency images led to faster training compared 
to using the original images, even though the discrep-
ancy in final accuracies was not as large. While high fre-
quency image training reached 70% validation accuracy 
within 5 epochs, original image training did not reach 
70% until the 23rd epoch (or 68% until the 19th epoch; 
Supplemental Figure 1). Final testing accuracy was tested 
after 25 epochs of training as both training and valida-
tion accuracies did not improve further after around 25 
epochs. At 35 epochs and beyond, validation accuracies 
began to deteriorate for high-frequency images and origi-
nal images likely due to overtraining, and this trend was 
largely similar regardless of training sample size or base 
models.

GPU load and memory use were tracked and showed 
that GPU load varied between 94-99% and memory load 
remained at 89% during training for all image types (Sup-
plemental Figure 2A). CPU load varied between 15-25% 
during the training process (data not shown). For pre-
processing of original images into the high- and low-
frequency images, there was minimal GPU and memory 
usage (<1% and 10%, respectively; Supplemental Fig-
ure 2B) and 16-27% CPU load.

When VGG16-base model was retrained using a larger 
training set (80% of the total dataset), normal and high-
frequency images achieved similar average AUCs of 
0.758 and 0.795 (Table  1). Additionally, each image set 
was trained with different models including VGG19, 
ResNet50, and Xception using the smaller training sam-
ple size (60% training set). Average AUCs for VGG19 
model trained with normal, high-frequency, and low-fre-
quency images were 0.680, 0.778, and 0.360, respectively. 
Average AUCs for ResNet50 model trained with normal, 
high-frequency, and low frequency images were 0.763, 
0.804, and 0.482, respectively. Average AUCs for Xcep-
tion model trained with normal, high-frequency, and low 
frequency images were 0.789, 0.808, and 0.425, respec-
tively (Table 2).

Discussion
In their original work, Kermany et. al. elegantly demon-
strated the power of deep learning with application to 
automated diagnosis of common retinal conditions based 
on OCT images[12]. In this study, we demonstrated that 
through Fourier transformation and frequency-based 
filtering, learning can be directed towards a relatively 
focused set of features while still preserving the benefit 
of flexible unsupervised learning within the set.  In the-
ory, this represents a middle ground between machine 
learning and deep learning. Specifically, our results dem-
onstrated that when distinguishing normal retina from 
drusen, DME, and CNV, high frequency images likely 
contain more useful information or features than low fre-
quency images. Using the VGG16 model, an improved 
performance was achieved when trained with high fre-
quency images compared with the original images. In 
fact, the model trained with high frequency images also 
achieved and plateaued at its final accuracy much ear-
lier compared to the model trained with normal images, 
although the performance did begin to converge after 
15 epochs of training. The accelerated training and 
improved final performance may be due to offloading of 
the nonspecific low frequency features during the train-
ing process. That said, with enough sample size and 
model complexity, the original images should eventually 
achieve similar or even better performance, as it con-
tains all the features. Meanwhile, low frequency features, 

https://keras.io/api/applications/
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Fig. 2  Precision-Recall (PR) Curves for each image set and Area Under the Curve (AUC) for each pathology vs. the rest. A PR curve for 
high-frequency images, Blue: CNV AUC = 0.866±0.037, Red: DME AUC = 0.716±0.048, Yellow: Drusen AUC = 0.575±0.054, Green: Normal AUC = 
0.904±0.017. B PR curve for original images, Blue: CNV AUC = 0.769±0.045, Red: DME AUC = 0.667±0.049, Yellow: Drusen AUC = 0.469±0.052, 
Green: Normal AUC = 0.844±0.022. C PR curve for low-frequency images, Blue: CNV AUC = 0.194±0.030, Red: DME AUC = 0.409±0.046, Yellow: 
Drusen AUC = 0.178±0.030, Green: Normal AUC = 0.707±0.029

Table 1  Area-under-the-curve and 95% confidence interval for each pathology vs rest
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which illustrate the general contour of the overall retina, 
expectedly struggled with classification accuracy.

Specifically, when the training sample size was limited 
and model architecture was simplified (VGG16 vs Incep-
tion V3 used by the original article), the normal images 
achieved a relatively limited average AUC of 0.687, indi-
cating that good performance largely depended on the 
size of the training set and the complexity of the model 
architecture. However, our results demonstrate that by 
extracting high frequency details or features using Fou-
rier transformation, the final performance of the model 
can be enhanced, achieving an average AUC of 0.765, 
without increasing training sample size or model com-
plexity. The use of Fourier transformation allowed us 
to change images from the spatial domain into the fre-
quency domain where the high frequency signals corre-
sponded to fine details within the spatial domain (such 
as each retinal layer) and low frequency signals corre-
sponded to the gross shape and form of the entire image 
in the spatial domain (such as overall retinal contour). 
By splitting the overall details of the images in half in the 
frequency domain (i.e., bandpass filter), high-frequency 
images containing fine details of retinal layers and low-
frequency images containing gross retinal contour can be 
produced by transforming frequencies back to the spatial 
domain through inverse transformation. Given that sub-
retinal neovascular formation in CNV, intraretinal fluid 
in DME, and sub-retinal pigmented epithelium (sub-
RPE) deposits in drusen are all expected to significantly 
alter retinal layers (and with DME also altering gross 

retinal contour), high frequency images that capture 
these key layers expectedly performed well. On the other 
hand, as details of most retinal layers were missing from 
the low frequency images, they did not perform as well. 
Notably, the model trained with low frequency images 
classified almost all images as DME. While this may be 
purely coincidental, it is also possible that the model 
is biased towards gross retinal contour change seen 
in DME, which is well captured by the low frequency 
images.

In addition to improved final performance, high fre-
quency images also exhibited accelerated training speed 
which may allow for truncation of training duration. 
While complex measurements and calculations of com-
putational efficiency is beyond the scope of this project, 
if training is truncated to when maximum validation 
performance is achieved, truncated training with high-
frequency images may reduce the duration of the training 
by a factor of 1.33 compared to the full training with the 
original image; consequently, reducing the net GPU and 
memory use by factors of 2.5 and 2.3, respectively. While 
cropping the images to smaller size also helped acceler-
ate training and reduce computational burden, identical 
cropping was applied to all three groups, and therefore 
will not affect the relative difference in training and per-
formance among the groups.

It should be noted that improved performance of 
VGG16 model trained with high frequency images does 
not immediately imply that all deep learning using OCT 
images should be focused on high frequency images. First 

Table 2  Area-under-the-curve and 95% confidence interval for each pathology vs rest
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of all, as delineated above, the benefit of high frequency 
images demonstrated in our manuscript is, in theory, due 
to intrinsic changes to the retinal layers in the patholo-
gies contained within the dataset. An alternative pathol-
ogy that exhibits more gross retinal contour change, 
central serous retinopathy for example, may benefit 
from low frequency imaging or a different preprocessing 
method all together. Secondly, as demonstrated by addi-
tional modeling with different training set size or differ-
ent models, the benefit of this preprocessing method is 
most apparent when there is limitation to training sam-
ple size or model depth. As shown by VGG16 modeling 
using a larger training set (80% of dataset), while high 
frequency images continued to perform well, original 
images achieved a similar final performance, challenging 
the superiority of the high frequency images. Similarly, 
when VGG19, ResNet50, and Xception-based models 
were trained with the three data sets, results differed 
based on the base model. While high frequency images 
led to good performance in all models, a benefit over use 
of the original images was only detected in the VGG19 
model. Conversely, ResNet50 and Xception models 
trained with original images showed similar performance 
to those trained with high frequency images. Compared 
to VGG16 or VGG19 architectures, the ResNet50 and 
Xception architectures are significantly deeper with 107 
and 81 layers, respectively. Additionally, RestNet50 and 
Xception architectures involve more complex designs, 
namingly skip connections that do not exist in the VGG 
models. These results demonstrate that the benefit of 
high frequency images only becomes apparent when the 
training set size and/or model depth are constrained. In 
other words, by preprocessing the image set, it is possible 
to approach the performance level of a bigger data set or 
a more complex model while using a smaller data set or a 
simpler and shallower model architecture.

It is not easy to ascertain how preprocessed images (or 
inputs) interact differently with each layer of the deep 
learning model. However, we speculate that the ability 
for the high frequency images to improve performance 
in the setting of low sample size and shallower model 
may be due to increased efficiency for features to be opti-
mally weighted at each hidden layer. The increased pro-
portion of useful features in high-frequency images after 
the filtering process may have helped to mitigate the dis-
advantages of reduced instances of useful features (due 
to smaller sample size) or decreased rounds of weight 
adjustments (due to shallower architecture). While add-
ing additional depth to VGG models may not seem chal-
lenging, development of progressively deeper and more 
complex architectures may be quickly outgrowing the 
capabilities of computational hardware [13]. Similarly, 
rare or novel diseases will pose challenges to acquiring 

large sample sizes for training, especially in an era when 
previously larger unified diagnoses are being subdivided 
further to discrete entities. Therefore, there will be situa-
tion in which preprocessing through filtering – bandpass 
filter being one of them – may enable meaningful model 
training when we cannot acquire sufficient samples. In 
such cases, our approach to preprocess/filter the images 
prior to training may serve as a facilitation step to over-
come limitations posed by sample size, model architec-
ture, or both.

It is important to acknowledge that preprocessing 
is not necessarily an unexplored area in deep learn-
ing. However, prior work on preprocessing of images 
for deep learning has been focused largely on augment-
ing the dataset to improve generalizability [14, 15]. For 
example, the sample size of the training dataset – and 
consequently number of unique features/orientations 
– can be increased by multiple folds through rotations, 
translations, shifting, etc. The ultimate goal of augmen-
tation was to construct a more comprehensive dataset 
that increased the robustness of the final model. Con-
sequently, this has also led to an increase in the overall 
computational burden. In contrast, our approach using 
Fourier transformation and bandpass filter attempted to 
construct a more efficient dataset by trimming away the 
relatively irrelevant features. By choosing the appropriate 
method to filter features, as we have demonstrated, better 
final performance can be achieved with the same sample 
size and model. It should be noted that preprocessing for 
augmentation and filtering are not mutually exclusive as 
both methods can be used in series when preprocessing 
images. In fact, they may be additive or even synergistic 
as both are intended to present the model with as many 
relevant features as possible during training.

The present study is limited to a particular image 
preprocessing method on a specific imaging modality, 
focused on a specific region of interest (ROI). We are 
not implying that Fourier transformation will improve 
performance for all trainings, or that high bandpass fil-
ter is always superior to low bandpass filter. Instead, as a 
proof of concept, we want to demonstrate that the Fou-
rier transformation and high bandpass filter is an appro-
priate preprocessing method to accelerate and improve 
training for distinguishing drusen, DME, and CNV on 
OCT images. Conversely, low bandpass filters may be 
appropriate for training of entities with more global tis-
sue disruption (such as a retinal detachment detection 
using fundus photos), as the overall regional difference 
may be more telling than fine details. In this study, inten-
sities of the high frequency and low frequency images 
were equalized through bandpass thresholding for aca-
demic comparison purposes. In reality, bandpass filter 
can be set to any threshold to achieve maximum training 
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performance, tailored to the specific image type. Simi-
larly, the degree of benefit achieved by such filtering may 
depend on sample selection, which is not further inves-
tigated in the present study. As the model trained in the 
original article has largely achieved performance ceiling, 
we downsized the training sample size to better demon-
strate performance improvement after preprocessing. 
Different downsizing approaches, therefore, may bias the 
resulting training sets differently and yield varied degrees 
of benefit.

For our future endeavors, we look to investigate other 
filter-based preprocessing methods that may contribute 
to improved training with deep learning models, with 
an attempt to truly apply the methods to rarer diseases. 
Other processing methods, ranging from segmenta-
tion to contrast enhancement, may all be useful when 
applied to the right images for the appropriate trainings. 
For example, red-green filter may be an appropriate fil-
tering method for preprocessing of wide-field fundus 
photos for identification of various peripheral retinal 
lesions. Speckle noise removal may be another possi-
ble preprocessing method that could enhance perfor-
mance of models trained with OCT images. Literatures 
from both ophthalmology and dermatology have found 
success in removing speckle noises using unsupervised 
learning (K-means) or deep learning [16, 17]. In theory, 
OCT images without noises should result in improved 
modeling and performance, although running additional 
unsupervised learning or deep learning just for image 
preprocessing may not be an worthwhile approach.

Finally, we must emphasize that the Fourier transfor-
mation approach introduced here or filter-based pre-
processing in general are not meant to be an upgrade 
to the current state-of-the-art deep learning. Rather, it 
offers another option in situations when an aspect of the 
ideal deep learning set up is limited: whether it be com-
putational hardware, sample size, model complexity, or 
time. In an ideal world, original images from a large data-
set should be used to train an appropriately deep model 
in order to achieve the most robust performance. By pre-
processing the data, we actively hinder what may be the 
essence of deep learning: freedom to choose useful fea-
tures with minimal human interference. However, with a 
small amount of guidance, it has the potential to reduce 
the minimal sample size or model complexity needed to 
achieve meaningful training, opening up applications for 
scholars without access to large computational cores or 
databases. While small scale training using this approach 
does not replace large scale studies by large centers, it 
can potentially bridge between human-guided machine 
learning and machine-driven deep learning to facilitate 
influx of ideas into the fields of artificial intelligence and 
ophthalmology. Just as importantly, it offers an approach 

in which deep learning can be implemented to relatively 
rare diseases or small subpopulations in which it is unre-
alistic to train full-scale deep learning models based on 
large datasets. Similar benefit also extends to early imple-
mentation of deep learning in small preliminary datasets 
(e.g., novel imaging modalities, status-post novel treat-
ments) to guide future research directions.

Conclusion
With increased availability of large datasets including 
images, artificial intelligence is beginning to play a larger 
role in analytical works as well as practical clinical func-
tions. However, the prevalence of artificial intelligence 
research can be limited by relatively stringent require-
ment for large sample sizes, sophisticated modeling, and 
high-end computational hardware. In this study, we dem-
onstrated that training of deep learning models can be 
facilitated by utilizing Fourier transformation-based pre-
processing, achieving improved final performance when 
sample size and model complexity were suboptimal. Our 
approach is not meant to surpass or compete with the 
current state-of-the-art deep learning modeling using 
large datasets and deep network architectures. Addition-
ally, the specific Fourier transformation-based approach 
highlighted in this manuscript is unlikely to benefit other 
imaging modalities or diseases to similar a degree. How-
ever, as we begin to bring deep learning into areas of rela-
tively rare diseases, the generalized approach for refining 
features during preprocessing, in addition to augmenta-
tion, may open opportunities for successful modeling in 
areas never imagined before.
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