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Abstract 

Background To develop a deep learning (DL) model based on preoperative optical coherence tomography (OCT) 
training to automatically predict the 6-month postoperative visual outcomes in patients with idiopathic epiretinal 
membrane (iERM).

Methods In this retrospective cohort study, a total of 442 eyes (5304 images in total) were enrolled for the develop-
ment of the DL and multimodal deep fusion network (MDFN) models. All eyes were randomized into a training data-
set with 265 eyes (60.0%), a validation dataset with 89 eyes (20.1%), and an internal testing dataset with the remain-
ing 88 eyes (19.9%). The input variables for prediction consisted of macular OCT images and diverse clinical data. 
Inception-Resnet-v2 network was utilized to estimate the 6-month postoperative best-corrected visual acuity (BCVA). 
Concurrently, a regression model was developed using the clinical data and OCT parameters in the training data set 
for predicting postoperative BCVA. The reliability of the models was subsequently evaluated using the testing dataset.

Results The prediction DL algorithm exhibited a mean absolute error (MAE) of 0.070 logMAR and root mean square 
error (RMSE) of 0.11 logMAR in the testing dataset. The DL model demonstrated a robust promising performance 
with  R2 = 0.80, notably superior to  R2 = 0.49 of the regression model. The percentages of BCVA prediction errors 
within ± 0.20 logMAR amounted to 94.32% in the testing dataset.

Conclusions The OCT-based DL model demonstrated sensitivity and accuracy in predicting postoperative BCVA 
in iERM patients. This innovative DL model exhibits substantial potential for integration into surgical planning 
protocols.
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Background
Epiretinal membrane (ERM) is a fibrocellular layer that 
develops on the inner surface of retina and causes visual 
symptoms including impaired visual acuity, metamor-
phopsia, visual field loss, and even diplopia. A systematic 
review of over 49,000 individuals indicated that older age 
and female gender were significantly associated with an 
increased risk of idiopathic ERM (iERM). IERM affects 
an estimated population of 30 million adults in the 
United States, ranging in age from 43 to 86 [1], with up 
to 20%–35% of iERM cases being bilateral [2, 3]. ERM is 
characterized by fibrocellular proliferation with or with-
out neurosensory retina wrinkling. The etiology of iERM 
is unknown. However, secondary ERM may result from 
reactive wound healing and proliferation. The hypoth-
esis that iERM develops as a result of microbreaks in 
the internal limiting membrane (ILM) caused by poste-
rior vitreous detachment is widely accepted. The micro-
breaks in the ILM provide an opportunity for the retinal 
glial cells or possibly retinal pigment epithelium cells to 
migrate to the inner surface of the retina and proliferate 
[4, 5].

Surgical intervention in patients with iERM usually 
depends on the severity of their symptoms. Compared 
with delayed surgery, earlier vitrectomy surgery for 
patients with iERM may result in better long-term visual 
acuity [3, 6]. According to a meta-analysis of 10 studies 
(1,482 ERM eyes), the distortion improves but fails to 
completely resolve after fibrocellular membrane peeling. 
A postoperative effect is that visual acuity improves by 
two lines or more on average. However, approximately 
10%–20% of iERM patients will have unchanged or worse 
vision after surgery [7].

Optical coherence tomography (OCT) is a highly sen-
sitive and widely used method for making the diagnosis 
and assessing the prognosis of ERM [8]. With OCT, the 
ERM can be identified by a hyperreflective layer or, occa-
sionally, an irregular layer on the retina’s inner surface. 
Some OCT parameters have been identified as predictors 
of postoperative visual outcomes. The intact inner photo-
receptor and ellipsoid zone were found to be associated 
with better postoperative visual acuity in iERM patients, 
whereas photoreceptor disruption was shown to be a 
predictor of poor postoperative visual acuity [9, 10]. With 
the OCT B-scan, surgeons could assess the fundus status 
of iERM eyes on an anatomical scale, but it was challeng-
ing to directly convert the morphological images to post-
operative visual acuity.

Deep neural networks (DNNs) have revolutionized 
the field of medical image analysis over the recent dec-
ade. Deep learning (DL) algorithms have demonstrated 
higher discriminative powers compared to those of 
ophthalmologists in diagnosing diabetic retinopathy, 

age-related macular degeneration, and potential glau-
coma [11]. Given the more intricate and variable ana-
tomical characteristics of the fundus, DL may be effective 
in predicting postoperative best-corrected visual acuity 
(BCVA) by incorporating the information from these 
parameters. Based on preoperative macular OCT images 
and clinical data, this study aimed to create a DL model 
capable of predicting the BCVA 6  months after vitrec-
tomy and membrane peeling (VMP). In this study, we 
also attempted to compare the prediction results of DL 
with that of a stepwise multiple regression model based 
on the same independent variables used in the AI model 
and other important factors influencing BCVA improve-
ment, including the duration of symptoms [12], preop-
erative BCVA [13], inner segment/outer segment (IS/OS) 
integrity [9, 14, 15], foveolar detachment [16] and central 
macular thickness (CMT) [17].

Methods
Ethics
This study was approved by the Institutional Review 
Board of the Tianjin Medical University Eye Hospital 
(TMUEH, No. 2021KY(L)-03). In compliance with the 
tenets of the Declaration of Helsinki, all private informa-
tion was removed in advance, and written consent was 
obtained from the patients.

Participants and data collection
This study retrospectively collected OCT images from 
iERM patients in Tianjin Medical University Eye Hos-
pital (Tianjin, China) from July 2016 to December 2021. 
The patients’ gender, age, preoperative BCVA, duration 
of symptoms (e.g., progressive visual impairment and 
metamorphopsia), lens status, and 6-month postopera-
tive BCVA were retrieved from the electronic medical 
records. The surgical process of VMP is shown in the 
online Supplementary Method 1. The inclusion criteria 
were as follows: (1) patients who underwent ophthal-
mic examination and were diagnosed with iERM, (2) 
underwent macular OCT scanning before surgery, (3) 
underwent uneventful VMP surgeries, and (4) had reli-
able 6-month postoperative BCVA records. The exclu-
sion criteria included eyes with: (1) secondary ERM and 
concomitant diseases such as diabetic retinopathy, vein 
or artery occlusion, and glaucoma; (2) corneal opacity 
or any other ocular disease that might influence visual 
acuity; and (3) significant cataract prior to surgery or 
during the 6-month follow-up period. Spectral domain-
OCT scanning was performed using Heidelberg Spectral 
OCT (Heidelberg Engineering, Germany) on all eyes at 
baseline. The details of the OCT examination and OCT 
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parameter measurements are described in the online 
Supplementary Method 2.

Finally, 5,304 qualified OCT images were collected 
from 442 eyes (12 images from each eye). Specifically, 
12 B-scans of each eye were seen as a whole, which was 
paired with patient data (BCVA). Subsequently, the 
images were randomized into a training dataset (265 
eyes, 60.0% of all the eyes) for model development, a vali-
dation dataset (89 eyes, 20.1% of all the eyes) for param-
eter adjustment, and a testing dataset (88 eyes, 19.9% of 
all the eyes) for internal test and model evaluation.

Development of the DL model
Inception-Resnet-v2 network [1, 18], a DNN with 164 
convolutional layers, was employed to estimate the 
6-month postoperative BCVA. The parameters of the 
DNN were initialized against the ImageNet pretrained 
model. Preoperative OCT images and clinical data were 
used as the input data. Based on the requirements of 
Inception-Resnet-v2 network, the OCT images were 
preprocessed to normalize the input data. We removed 
saturated pixels from the raw images with an intensity 
value of 255, and then resized them into 299 × 299 pix-
els. For each training iteration, a Huber loss was used 
as the objective loss function, and an adaptive momen-
tum (Adam) algorithm was used to update the network 

parameters via back-propagation. At every epoch, the 
performance of network was assessed using the tun-
ing dataset. Back-propagation was repeated for all 
training images until the network reached satisfactory 
performance. The network was a regression model out-
put according to the final fully connected layer and a 
regression layer in the last layer. The batch size was 30, 
and the learning rate was set to 0.001. The illustration 
of the pipeline of the work is demonstrated in Fig. 1. In 
our study, we employ a Convolutional Neural Network 
(CNN) specifically designed to process the OCT image 
data. Concurrently, we use a Multilayer Perceptron 
(MLP) to handle the structured patient data, including 
age, pre-operative visual acuity, gender, and duration of 
symptoms. The processed features from both the CNN 
and MLP are then seamlessly fused to create a compre-
hensive feature set. Utilizing this enriched feature set, 
our multimodal deep fusion network is capable of pre-
dicting the post-operative visual acuity with improved 
accuracy. This robust fusion approach capitalizes on the 
strengths of both image and structured data, thereby 
enhancing the predictive power of our model.

Fig. 1 Demonstration of construction of deep learning models. The preoperative b-scan OCT images and clinical data are fed into the model. 
"CNN" was used to mark the component where the convolutional neural network processes the OCT images, and "MLP" to indicate 
where the multilayer perceptron handles the structured patient data (including age, pre-operative visual acuity, gender, duration of symptoms, etc.). 
It eventually outputs the prediction of 6-month postoperative BCVA. BCVA, best-corrected visual acuity; CNN: convolutional neural networks, MLP: 
multilayer perceptron; MDFN, multimodal deep fusion network
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Stepwise multiple regression model
The 265 eyes of the training set from the DL model 
were subsequently used to create a stepwise multiple 
regression model for the prediction of 6-month postop-
erative BCVA. Gender, age, preoperative BCVA, symp-
tom duration, preoperative IS/OS integrity, foveolar 
detachment and CMT were all considered independent 
variables. Specifically, IS/OS integrity was graded into 
two groups: intact and disrupted (the hyporeflective 
disruption of the hyperreflective IS/OS junction) [9, 
19]. The coefficient of determination  (R2) of this step-
wise multiple regression model was calculated using 
the 88 eyes that had been included as the testing data-
set in the DL model.

Evaluation
The metrics used to show the differences between the 
actual 6-month postoperative BCVA and the estimated 
BCVA were mean absolute error (MAE), root mean 
square error (RMSE), and the  R2, which are defined as:

where N denotes the number of eyes, ỹi denotes the 
actual 6-month postoperative BCVA, and yi denotes the 
estimated BCVA.

The prediction error was calculated by subtracting the 
estimated BCVA from the actual BCVA. The accuracy 
is defined as the percentage of BCVA prediction errors 
within ± 0.20 logMAR [20], namely:

MAE =
1

N

N

i=1

|yi − yi|

RMSE =

√√√√ 1

N

N∑

i=1

(ỹi − yi)
2

where N, ỹi , and yi have the same meanings as above; the 
function I(·) returns 1 if the condition in ( · ) is true, else 
returns 0.

Gradient-weighted class activation mapping (Grad-
CAM), a method for creating "visual explanations", 
increases the transparency of judgments made by a broad 
class of DNN-based models. A coarse localization map 
highlighting the key areas in the image for concept pre-
diction is produced by the Grad-CAM image by using the 
gradients of any target concept and flowing into the final 
convolutional layer [21]. To interpret the estimations and 
increase model transparency, Grad-CAM was used to 
highlight the discriminative regions of input images in 
BCVA prediction [21].

Statistics
Ocular parameters in the training, validation, and test-
ing datasets were compared using an independent t-test. 
The alignment of the estimated and actual BCVA was 
presented by scatter plots. Bland–Altman plotting was 
used to visualize the agreement between the estimated 
and actual values of BCVA. To implement and deploy 
the network, MATLAB (2020a) was used for training and 
evaluation. The model was trained on a GPU of NVIDIA 
RTX3090 with CUDA version 11.3 and cuDNN 8.0. The 
Inception- ResNet-V2 network architecture used in this 
work was publicly available in the deep learning tools 
package. To determine the relationships between the 
actual and estimated postoperative BCVA values from 
the DL and stepwise multivariate regression model (gen-
der, age, symptom duration, preoperative BCVA, IS/OS 
integrity, foveolar detachment and CMT),  R2 was calcu-
lated. Each variable’s entry and exit criteria for the model 
were determined using the F test, with P values set at 0.05 
and 0.1, respectively (in collinearity diagnostic tests, all 

Re0.2logMAR =
1

N

N∑

i=1

I(|̃yi − yi| ≤ 0.2logMAR)

Table 1 Baseline characteristics of the eyes

LogMAR Logarithm of the minimum angle of resolution, BCVA Best corrected distance visual acuity, IS/OS Inner segment/outer segment, CMT Central macular 
thickness, Pre-op Preoperative, Post-op postoperative

Baseline characteristics of iERM eyes Training set (n = 265) Validation set (n = 89) Testing set (n = 88)

Age (years) 66.32 ± 9.13 67.41 ± 7.47 66.23 ± 8.42

Gender, female (%) 58.98% 59.17% 64.28%

Symptom duration (years) 1.19 ± 1.06 1.06 ± 0.79 1.09 ± 0.96

IS/OS integrity (disrupted) 0.38 ± 0.24 0.35 ± 0.19 0.33 ± 0.47

Foveal detachment (%) 9.24% 10.06% 9.48%

CMT(μm) 402.91 ± 63.72 415.36 ± 59.32 411.36 ± 57.44

Pre-op BCVA (log MAR) 0.56 ± 0.31 0.55 ± 0.42 0.55 ± 0.30

Post-op BCVA (log MAR) 0.31 ± 0.24 0.32 ± 0.29 0.32 ± 0.24
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variance inflation factors were < 10, showing no multicol-
linearity). The following equation represents a stepwise 
regression model: y = β0 + β1X1 + β2X2 + ⋯ + βpXp + 
ε, where β is the regression model’s coefficient, and ε is 
referred to as the error term. Differences with a P-value 
of 0.05 or less were considered statistically significant.

Results
Of the 485 retrospectively enrolled participants, 429 indi-
viduals (442 eyes) were eventually included in the current 
study, while the remaining 56 (11.2%) individuals whose 
images lacked clinical data or were low-quality OCT 
images were excluded. The details of these separate data-
sets and other essential information included in the final 
analysis are shown in Table 1. No significant differences 

in gender, age, preoperative BCVA, duration of symp-
toms, IS/OS integrity, foveolar detachment, CMT, and 
6-month postoperative BCVA were identified among the 
subgroups (p > 0.05). All participants were of the same 
ethnicity (Han Chinese).

The prediction algorithm demonstrated promis-
ing outcomes with MAE of 0.070 logMAR and RMSE 
of 0.11 logMAR. The estimated and actual values are 
shown in the scatter plot (Fig. 2A), with the coefficient 
of determination  R2 = 0.80. In Bland–Altman plots, 
the mean difference of BCVA was 0.04 (95% CI, -0.24 
to 0.16), with 10.22% (9/88 eyes) measurement points 
located outside the 95% limits of agreement (Fig.  2B). 
Based on the testing dataset, the univariate regression 
model revealed preoperative BCVA and IS/OS integrity 

Fig. 2 The scatter plots of the predicted BCVA and the actual BCVA in the testing dataset (A). The Bland–Altman plots of the predicted BCVA 
and the actual BCVA in the testing datasets (B). The three dotted lines show the mean differences and the 95% confidence level of the difference. 
BCVA, best-corrected distance visual acuity; logMAR, the logarithm of the minimum angle of resolution

Table 2 Linear regression analyses of the associations of postoperative BCVA with baseline characteristics

BCVA Best corrected distance visual acuity, IS/OS Inner segment/outer segment, CMT Central macular thickness, Pre-op Preoperative, Post-op Postoperative

Univariate model Multivariate model

β value (95% CI) P value β value (95% CI) P value

Age (years) -0.002 (-0.006 to 0.000) 0.065 - -

Gender (male) 0.060 (-0.049 to 0.061) 0.826 - -

Symptom duration 0.025 (0.005 to 0.045) 0.013 - -

IS/OS integrity (disrupted) -0.13 (-0.184 to -0.075)  < 0.001 - -

Pre-op BCVA 0.608 (0.545 to 0.671)  < 0.001 -0.002 (0.537 to 0.664)  < 0.001

Foveal detachment 0.023 (-0.091 to 0.137) 0.24 - -

CMT 0.009 (-0.008 to 0.026) 0.16 - -
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were significantly associated with postoperative BCVA 
(P < 0.001, Table  2). According to the stepwise analy-
sis, preoperative BCVA was associated with 6-month 
postoperative BCVA (β = -0.026, P < 0.001). The  R2 and 
MAE of the stepwise multiple regression model were 
0.49 and 0.12, respectively.

The distributions of the difference between the actual 
and the estimated values of BCVA are shown in Fig. 3. 
The percentages of the prediction errors within ± 0.20 
logMAR were 94.32% in the separate testing dataset.

To visualize the prediction process, the Grad-CAM 
presented a highly discriminative region of OCT scan-
ning when predicting the BCVA (Fig.  4). Representa-
tive cases of the good postoperative eye (Fig.  4A) and 
poor vision eye (Fig.  4B) were demonstrated, showing 
the highly discriminative region of OCT scanning when 
predicting the BCVA.

Discussion
Since iERM is inevitably complicated by macular com-
plications, such as macular edema, disorganization of 
retinal inner layers, and photoreceptor disruption, the 
visual benefit from VMP remained hard to predict pre-
operatively. Therefore, we developed a DL model that 
could predict the post-VMP BCVA of iERM eyes using 

preoperative macular OCT images and clinical data as 
input.

Regarding postoperative recovery and rehabilitation, 
most patients are concerned about postoperative BCVA, 
which is a scientific indicator of how they are affected in 
their daily lives. Owing to the satisfactory repeatability 
and reproducibility of OCT [22], B-scan OCT parame-
ters, such as photoreceptor junction and CMT, have been 
used as the visual predictors of iERM surgery [23]. A pre-
vious study demonstrated choroidal circulation might 
predict visual outcomes using OCT angiography [21]. 
Another study investigated the impact of CMT, adher-
ence-zone area, and number of marginal retinal folds on 
postoperative visual acuity using en-face OCT images 
[24]. However, these findings on OCT scanning were 
summarized from only a few parameters and evaluated 
subjectively [23, 25]. We proposed accurately predict-
ing BCVA using DL algorithms to enable more objective 
examination and quantitative analysis of the OCT images 
and clinical data.

In recent years, artificial intelligence (AI) technology, 
particularly DL, has been widely applied in processing 
highly complex tasks, such as image segmentation and 
medical image classification [26]. The convolutional neu-
ral network, which generated the postoperative BCVA 

Fig. 3 The distribution of the difference between the estimated BCVA and the actual BCVA in the testing dataset. All values are provided in logMAR 
units. The vertical axis indicates the relative frequency of each BCVA delta value. BCVA, best-corrected visual acuity; logMAR, the logarithm 
of the minimum angle of resolution; Re0.20logMAR, the percentage of BCVA prediction errors within ± 0.20 logMAR
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predictions automatically, consists of multiple convolu-
tional and pooling layers for automatic feature extrac-
tion. DL-based AI has been reported to be capable of 
predicting visual outcomes of retinal or macular diseases, 
such as neovascular age-related macular degeneration, 
diabetic macular edema, or retinopathy of prematurity 
[27, 28]. OCT scanning of macular have been proposed 
in previous studies to provide millions of morphological 
parameters associated with BCVA [29]. Although VMP 
has been proven to be an effective treatment technique 
for iERM the association between the OCT morphology 
and the visual outcomes, as assessed 6-month postop-
eratively, has never been reported. Hence, it is feasible 
and meaningful to employ DL to predict postoperative 
BCVA.

In the present study, Grad-CAM helps ophthalmolo-
gists determine whether the predictive results are cred-
ible by highlighting the decision-making regions. While 
it effectively visualizes the importance of specific regions, 
it does not provide a measure of the model’s certainty 

regarding its predictions. The reason why we did not 
look at the center but looked at the periphery is that it 
is appropriate to use the deformation of the periphery to 
measure the load on the neural retina of ERM. Moreover, 
GRAD-CAM’s dependence on gradient information may 
not always capture all relevant features in an OCT image, 
as the gradients can be sensitive to minor perturbations 
and noise, potentially resulting in less accurate heatmaps.

In the present study, we compared the DL model 
to the stepwise regression model from clinical data, 
including age, gender, preoperative BCVA, symptom 
duration, IS/OS integrity, foveolar detachment and 
CMT. We demonstrated that OCT-based DL model 
performed better than logistic regression in predict-
ing postoperative BCVA. Despite similar methods, 
previous investigation differed in the prediction task 
assigned to the model. The previous investigation 
focused on binary classification (whether the VA will 
improve by ≥ 15 letters or not), while our study spe-
cifically aimed to predict the postoperative BCVA (the 

Fig. 4 Visualization of the visual acuity recovery prediction. Representative cases of Grad-CAM visualization in the good postoperative vision eyes 
(A). and the poor postoperative vision eyes (B). Grad-CAM, gradient-weighted class activation mapping
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predicted BCVA could be generated automatically) 
[30]. To our knowledge, this is the first report in lit-
erature that directly converts the SD-OCT scans to 
postoperative BCVA. Despite predicting postoperative 
BCVA being an intuitively harder task, the promising 
performance of the OCT-based DL model was dem-
onstrated. Taking the preoperative clinical data and 
OCT images as input data, our DL-based model has 
automatically predicted the postoperative BCVA with 
acceptable accuracies in the VMP-treated iERM eyes. 
With this model, ophthalmologists only need to input 
clinical and macular OCT images; then postoperative 
BCVA would be predicted and generated automatically. 
Visual acuity prediction could provide valuable guid-
ance for patients to understand the prognosis and make 
a surgical decision. Accurate prediction of postopera-
tive BCVA can give patients a reasonable expectation 
and help ophthalmologists deliver appropriate treat-
ment solutions.

It might also help with surgical decision-making, 
such as choosing more advanced surgical techniques. 
For visually significant iERM patients, a previous 
study demonstrated intravitreal injection of 0.7  mg 
dexamethasone (Ozurdex®) at the conclusion of vit-
rectomy could significantly decrease macular edema 
and improve visual outcomes [31]. When the prognosis 
assessment after vitrectomy and membrane peeling is 
unfavorable, more advanced surgical techniques, such 
as intraoperative intravitreal dexamethasone implant 
[32], can be recommended to patients.

There are several limitations to this study. First, 
the manually measured macular OCT parameters 
are prone to measurement errors. Nevertheless, the 
manual measurements by spectral-domain OCT were 
proven highly reproducible and repeatable in previous 
studies [22]. Second, the accuracy of DL algorithms 
was subject to the quality of OCT images. We ruled 
out ERM eyes secondary to vitrectomy or with refrac-
tive medium opacity. Third, the conclusion of the study 
is tentative, given the relatively small sample size and 
short-term follow-up [33]. However, this study offers 
valuable insights into the predictive ability of the estab-
lished DL model for patients with iERM. A further 
prospective multicenter trial is required to assess the 
accuracy and reliability. In addition, cataract occurs 
concomitantly with cataract in iERM eyes [34], we have 
defined the exclusion criteria to reduce the interference 
of cataract.

Conclusions
In conclusion, it has been demonstrated that the DL 
model could precisely predict the post-VMP BCVA 
based on the preoperative OCT images and clinical 
data via DL-based AI. The prediction model is expected 
to assist iERM patients in better understanding the 
postoperative prognosis and making a reasonable surgi-
cal decision.
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