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Abstract 

Purpose To observe and understand the structural changes in choroidal vessels in eyes with hyperopic anisome-
tropic amblyopia using swept-source optical coherence tomography angiography (SS-OCTA).

Methods A total of 44 patients were enrolled in this study: 22 children with hyperopic anisometropic amblyopia 
and 22 age-matched controls. SS-OCTA was used to scan the 6*6 mm macular area of their eyes. The average cho-
roidal thickness (CT) and choroidal capillary flow area (CC) in a 3 mm diameter area centered on the macular area 
were obtained. The choroidal vascularity volume (CVV) was automatically extracted and 3D reconstructed by inbuild 
software, and the three-dimensional choroidal vascularity index (3D-CVI) was calculated. The effect of amblyopia 
on the choroidal vessel structure was assessed using generalized linear estimating equations (GEEs) corrected for axial 
length, sex, age, and best-corrected visual acuity.

Results The CC was greater in amblyopic eyes than in fellow eyes (P = 0.014) but was not significantly different 
from that in control eyes (P = 0.963). After correcting for sex, age, axial length, and visual acuity using GEEs, the mean 
CT in the amblyopic eyes was greater than that in the fellow eyes (P = 0.030) but was not significantly different 
from that in the control eyes (P = 0.160). The 3D-CVI in amblyopic eyes was higher than that in control eyes (P = 0.038) 
but was not significantly different from that in fellow eyes (P = 0.407). The three-dimensional choroidal vascularity 
volume (3D-CVV) was higher in amblyopic eyes than in fellow eyes (P = 0.046) and control eyes (P = 0.023).

Conclusions We found that eyes with hyperopic anisometropic amblyopia demonstrated higher CT, CC and 3D-CVV 
values than the contralateral eyes after correction, while the 3D-CVI was unchanged. Compared with control eyes, 
amblyopic eyes had higher 3D-CVV and 3D-CVI values but similar CT and CC values. Amblyopic eyes may have differ-
ent choroidal vascular structures from fellow and control eyes.

Keywords Amblyopia, Hyperopia, Anisometropia, OCTA , Choroid, Choroidal thickness, Choroidal capillary, Choroidal 
vascularity volume, Choroidal vascularity index

Introduction
Amblyopia is one of the leading causes of visual 
impairment in preschool children in China [1, 2], and 
untreated amblyopia can impact the academic lives of 
affected children [3]. According to previous studies, 
anisometropia is responsible for most cases of amblyo-
pia [4]; this anisometropic amblyopia is caused by an 
abnormal interaction between the two eyes, resulting in 
amblyopia eyes having lower best-corrected visual acui-
ties than the fellow eyes [5].
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The amblyopic eye is usually considered free of ocular 
structural pathology. The normal structure and function 
of the choroid plays an important role in the nutrition 
and thermoregulation of the retina. In recent years, cho-
roidal changes have been observed in a range of diseases, 
including amblyopia [6, 7]. Some studies have demon-
strated thinner choroids in amblyopic eyes than in fellow 
and control eyes. However, studies investigating choroi-
dal vascular structure changes have reached different 
conclusions [8, 9]. Furthermore, choroidal thickness and 
vascular structures are affected by a variety of factors, 
such as age, sex, axial length (AL), and refractive error 
[10–13]. AL and refractive error differences are common 
between amblyopic eyes and normal eyes, and ignoring 
these factors will affect the accuracy of the results. How-
ever, whether there are anatomical differences in the cho-
roidal vascular structures between amblyopic and normal 
eyes remains to be understood.

With the development and widespread use of opti-
cal coherence tomography angiography (OCTA), it has 
become possible to understand the hierarchical struc-
ture of the retina and choroid in more detail. By using the 
variation in OCT signal caused by moving particles, such 
as red blood cells (RBCs), as the contrast mechanism 
for imaging blood flow, OCTA allows the visualization 
of functional blood vessels in the eye. In recent years, 
the use of swept-source OCTA (SS-OCTA) has become 
more beneficial for exploring deeper choroidal changes 
because of its faster scanning speed, clearer imaging 
quality, and greater scanning depth [14].

The choroidal vascularity index (CVI) is an OCT-based 
marker of choroidal vascularity that reflects the relation-
ship between the choroidal vascular area and the total 
choroidal area. Previous studies have demonstrated dif-
ferences in the CVI among patients with different refrac-
tive statuses [15], as well as amblyopia [16]. In previous 
studies, the CVI was typically obtained from a single 
B-scan image of the macula foveal region. Using one scan 
image covering the macula fovea to analyze changes in 
the CVI may not reveal the overall state of the choroidal 
vessels within a certain area. Choroidal vessel identifica-
tion and 3D reconstruction can provide more informa-
tion on the overall state of the choroid within a certain 
region and can provide a better understanding of the 
effect of disease on the choroidal vessels [13]. To our 
knowledge, there are no studies on the changes in 3D 
choroidal vessels between amblyopic and normal eyes.

In our research, we used SS-OCTA to scan the eyes of 
patients and age-matched normal controls and analyzed 
the differences in the mean choroidal thickness (CT), 
choroidal capillary flow area (CC), 3D-reconstructed 
choroidal vascular volume density (3D-CVI), and 
3D-reconstructed choroidal vascular volume (3D-CVV) 

between amblyopic eyes, fellow eyes and control eyes. To 
assess and increase our understanding of the structural 
differences in the choroidal vasculature in the macula of 
hyperopic anisometropic amblyopia and clarify the effect 
of amblyopia on 3D choroidal vascular structure,

Methods
Demographic data
This was a retrospective study approved by the Peking 
University First Hospital Human Research Ethics Com-
mittee (2022Yan187). Data collection was performed in 
accordance with the Declaration of Helsinki.

The data were collected consecutively from Febru-
ary 2022 to June 2022. Children aged 4 to 12 years who 
attended the pediatric ophthalmology department of 
Peking University First Hospital and underwent OCTA 
examination to screen for hyperopic anisometropic 
amblyopia were initially included as the amblyopia group. 
The criteria for diagnosing hyperopic anisometropic 
amblyopia were determined according to the American 
Academy of Ophthalmology guidelines [17]. The inclu-
sion criteria were as follows: 1, an equivalent spheri-
cal (SE) diopter (D) difference between both eyes > 1 D; 
2, hyperopia in both eyes; and 3, two-line difference in 
best-corrected visual acuity (BCVA) between both eyes, 
with the more hyperopic eye having worse visual acuity. 
The exclusion criteria were as follows: 1, the presence 
of retinal or choroidal disease; 2, treatment with instru-
ments that could potentially affect the retinal choroid; 3, 
esotropia or constant exotropia or vertical strabismus; 4, 
glaucoma; 5, previous internal eye surgery; 6, obstruction 
in the visual axis; 7, systematic disease; and 8, inability to 
cooperate with the examination for any reason.

We collected data from age-matched patients with mild 
hyperopia (< + 1.50 D), orthopia or mild myopia (> -0.50 
D) who had no amblyopia and no ocular or systemic 
disease as the control group. All participants’ cyclople-
gia refraction, axial length, and BCVA values were also 
collected.

Image acquisition
SS-OCTA (VG100; SVision Imaging, Ltd., Luoyang, 
China) was used to scan the macular area of the eyes of 
the participants. The scan was centered at a wavelength 
of approximately 1050  nm and performed at a rate of 
100,000 A-scans per second. The maximum axial and 
estimated lateral resolutions in the tissue were approxi-
mately 5  μm and 15  μm, respectively, and the scanning 
depth was 3 mm. Choroidal vascular distribution and CT 
data were obtained by a raster scanning protocol with 
1024 × 1024 B scans covering a 6  mm × 6  mm area cen-
tered on the central macular fovea. Eye-movement arti-
facts during and between scans were minimized by using 
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the built-in eye-tracking mode of the device based on the 
integrated confocal scanning laser detector lens.

Quantitative analysis was performed using a 
6 mm × 6 mm OCTA scan (Fig. 1). When performing the 
examination, the software automatically scores the qual-
ity of the scan (1–10, with 10 being the highest score), 
and if the score for that scan is below 7, the scan will be 
performed again for the child. The scan with the highest 
quality was selected for analysis. Choroidal parameters 
were analyzed using built-in software (V 1.36.10), and 
all subjects’ axial lengths were entered for image magni-
fication correction. The software automatically performs 
layer segmentation and quantitative analysis [18] (Fig. 2). 
Data were reviewed by the researcher before extrac-
tion, and if there were errors in the stratification, manual 

changes were made to the segmentation to ensure accu-
racy. To avoid incomplete areas due to the magnifica-
tion effect caused by hyperopia and the effect of retinal 
macrovascular occlusion, a circular area with a diam-
eter of 3 mm centered on the central macular fovea was 
selected for analysis. To avoid interference of the circa-
dian rhythm on the choroid, all subjects were examined 
from 9:00 am to 12:00 pm.

The choroid was defined as the area from the outer bor-
der of the retinal pigment epithelium-Bruch’s membrane 
complex to the choroid-sclera junction, and the thickness 
was recorded as the average choroidal thickness in this 
area (Fig.  2). The software automatically extracted the 
image of the scanned choroidal region and calculated the 
average choroidal thickness in that region.

The choroidal capillaries were defined as those in the 
area 10 μm above Bruch’s membrane to 25 μm below it. 
The inbuild software also automatically identifies this 
region, acquires the en face image (Fig.  2), selects the 
choroidal capillaries using the software’s threshold func-
tion and automatically calculates the flow area (Fig. 3).

The images of large and medium vessels were also 
automatically extracted by the software (Fig. 4), and 3D 
reconstruction was performed to calculate the choroidal 
large and medium vessel volume (3D-CVV). The 3D-CVI 
was defined as the ratio of the choroidal vessel volume to 
the total choroidal volume (TCV), which reflects the cho-
roidal vascular volume in the Sattler.

Statistical analyses
SPSS (version 26.0; IBM Corp., Armonk, NY, USA) was 
used for all statistical analyses. A chi-square test was 
used to compare the sex ratio between the two groups. 
The Kolmogorov–Smirnov test was used for normal-
ity testing. Normally distributed variables are expressed 
as the mean and standard deviation (mean ± SD), and 
nonnormally distributed variables are expressed as the 

Fig. 1 OCTA scan of 6 mm × 6 mm area centered on the macula 
fovea

Fig. 2 Definition of the choroid and choroidal capillaries. The inbuild software automatically performs layer segmentation. a. Choroid: the region 
spanning from the outer border of the retinal pigment epithelium-Bruch’s membrane complex to the choroid-sclera junction. b. Choroidal 
capillaries: the area 10 μm above Bruch’s membrane to 25 μm below it
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median and interquartile range (IQR). The means of nor-
mally distributed quantitative variables were compared 
using a t test. For nonnormally distributed data, the 
Mann–Whitney U test was used for testing. The two eyes 
in the amblyopic group were compared using the paired 
test, and amblyopic eyes were compared with control 
eyes using the between-group test. Multivariable gener-
alized estimating equation (GEE) models were used to 
adjust for the potential effects of axial length, sex and age 
on CT, 3D-CVI and 3D-CVV. P < 0.05 was considered to 
indicate statistical significance.

Results
Demographic data
A total of 44 children were included in this study, 22 with 
hyperopic anisometropic amblyopia and 22 in the con-
trol group. The clinical characteristics of each group are 
presented in Table  1. There were no significant differ-
ences between the amblyopic and normal control groups 
in terms of age or sex ratio. The mean axial length was 

Fig. 3 Automatic extraction and computational analysis of choroidal 
capillary images in a 3 mm-diameter circle centered on the fovea

Fig. 4 The software automatically extracts the scanned choroidal vessels and performs 3D reconstruction to calculate the CVV and CVI. a The 
software automatically extracts the choroidal large and medium vessels in each scan image. b 3D vessel reconstruction

Table 1 Clinical characteristics of the subjects

AE amblyopic eye, FE fellow eye, CE control eye, N number, BCVA best-corrected visual acuity, AL axial length, SE spherical equivalent, D diopter, SD standard deviation
* Paired t test between amblyopic eyes and fellow eyes
# t test between amblyopic eyes and control eyes

AE
mean ± SD

FE
mean ± SD

CE
mean ± SD

P  value* P  value#

N 22 22 22

Age (years) 6.54 ± 1.37 6.54 ± 1.37 6.63 ± 1.46 - 0.558

Sex

 Male 12 (52.4%) 12 (52.4%) 11 (50.0%) 0.763

 Female 10 (47.6%) 10 (47.6%) 11 (50.0%)

AL (mm) 21.56 ± 1.06 22.26 ± 1.15 22.96 ± 1.03  < 0.001  < 0.001

Diopter (D)  + 5.09 ± 2.01  + 3.05 ± 1.98  + 0.25 ± 0.68  < 0.001  < 0.001

BCVA (logMAR) 0.343 ± 0.255 0.104 ± 0.114 0.0029 ± 0.531  < 0.001  < 0.001
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21.56 ± 1.06  mm, 22.26 ± 1.15  mm, and 22.96 ± 1.03  mm 
in the amblyopic, fellow, and control eyes, respec-
tively, and the differences among them were significant 
(P < 0.001). The mean SE was + 5.09 ± 2.01 D, + 3.05 ± 1.98 
D and + 0.25 ± 0.68 D in amblyopic, fellow and control 
eyes, respectively (P < 0.001). The mean logMAR BCVA 
was 0.343 ± 0.255, 0.104 ± 0.114 and 0.0029 ± 0.531 in the 
amblyopic, fellow and control eyes, respectively, and the 
differences among the groups were significant (P < 0.001).

Choroidal capillary flow area (CC)
The CC did not conform to a normal distribution 
(P = 0.032, P = 0.003, and P = 0.015 for amblyopic, fellow 
and control eyes, respectively). The median CC was 6.69 
(0.103), 6.67 (0.167)  mm2 and 6.72 (0.197)  mm2 in the 
amblyopic, fellow, and control eyes, respectively. The CC 
was significantly higher in amblyopic eyes than in fellow 
eyes (P = 0.014), but there was no significant difference 
between amblyopic and control eyes (P = 0.963).

Choroidal thickness (CT)
The CT conformed to a normal distribution (P = 0.200). 
Within a 3  mm-diameter circle centered on the macu-
lar fovea, the mean CT was 388.6 ± 40.9  μm in the 
amblyopic eyes, 352.4 ± 56.6  μm in the fellow eyes, and 
338.2 ± 70.2 μm in the control eyes (Table 2). The CT was 
significantly greater in amblyopic eyes than in fellow and 
control eyes (P < 0.001 and P = 0.006, respectively). After 
GEE analysis, the CT in the amblyopic eyes was signifi-
cantly higher than that in the fellow eyes (P = 0.030) but 
was not significantly different from that in the control 
eyes (P = 0.160) (Table  3). There was a significant effect 
of axial length on CT; an increase in the AL was associ-
ated with an increase in the CT (P = 0.002). Age, sex, and 
BCVA had no effect on CT (Table 3).

3D‑CVI and 3D‑CVV
In the examination of the choroidal vasculature, the 
3D-CVI and 3D-CVV conformed to a normal distribu-
tion (P = 0.200). The mean 3D-CVI was 0.400 ± 0.064 
in the amblyopic eyes, 0.385 ± 0.048 in the fellow eyes, 
and 0.352 ± 0.087 in the control eyes; only the ambly-
opic and control eyes demonstrated a significant differ-
ence (P = 0.042; amblyopic vs. fellow eyes, P = 0.234). The 
3D-CVV in amblyopic eyes was significantly higher than 
that in fellow eyes (P = 0.003) and control eyes (P = 0.027) 
(Table 2).

GEEs were used to adjust for the effects of axial length, 
age, sex, and BCVA on the 3D-CVI and 3D-CVV. The 
3D-CVI in amblyopic eyes was significantly higher than 
that in control eyes (P = 0.038) but was not significantly 
different from that in fellow eyes (P = 0.407) (Table  4). 
There was no effect of axial length, age, sex, or BCVA 
on the 3D-CVI. Regarding 3D-CVV, amblyopic eyes 
had significantly higher values than fellow and control 

Table 2 CT, 3D-CVI, and 3D-CVV in the amblyopia group and control group

CT choroidal thickness, CC choroidal capillary flow area, 3D-CVI three-dimensional choroidal vascularity index, 3D-CVV three-dimensional choroidal vascularity 
volume, AE amblyopic eye, FE fellow eye, CE control eye
a t test, compared to amblyopic eyes
∗ statistically significant (P < 0.05)

Group CT (μm) CC  (mm2) 3D‑CVI 3D‑CVV  (mm3)
mean ± SD median (IQR) mean ± SD mean ± SD

0–3 mm area AE 388.6 ± 40.9 6.69 (0.103) 0.400 ± 0.064 1.099 ± 0.205

FE 352.4 ± 56.6 6.67 (0.167) 0.385 ± 0.048 0.966 ± 0.187

CE 338.2 ± 70.2 6.72 (0.197) 0.352 ± 0.087 0.864 ± 0.291

Amblyopic vs. fellow  eyesa t/z 5.022 -2.451 1.225 3.326

P  < 0.001∗ 0.014∗ 0.234 0.003∗

Amblyopic vs. control  eyesa t/z 2.909 -0.047 2.101 3.085

P 0.006∗ 0.963 0.042∗ 0.027∗

Table 3 Eye parameters and their relationships with choroidal 
thickness in the GEE model

CT choroidal thickness, AE amblyopic eye, FE fellow eye, CE control eye, AL axial 
length, BCVA best-corrected visual acuity
a GEE adjusted for age, sex, axial length and BCVA
∗ statistical significance (P < 0.05)

Group CT (μm) Betaa 95%  CIa Pa

mean ± SD

0–3 mm area AE 388.6 ± 40.9 Reference

FE 352.4 ± 56.6 -26.476 -50.325, -2.628 0.030∗

CE 338.2 ± 70.2 -31.463 -75.394, 12.469 0.160

AL -20.154 -22.019, -7.289 0.002∗

Age -1.554 -12.964, 9.838 0.789

Sex 17.058 -14.728, 48.844 0.293

BCVA -28.638 -94.414, 37.139 0.393
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eyes (P = 0.023 and P = 0.046, respectively) (Table  5). 
There was no effect of axial length, age, sex, or BCVA on 
3D-CVV (Table 5).

Discussion
The normal structure and function of the choroid plays 
an important role in the nutrition and thermoregulation 
of the retina. In recent years, there has been increasing 
focus on the role played by the choroid in various oph-
thalmic diseases [19, 20]. To clarify the effect of amblyo-
pia on choroidal vascular structure, we conducted this 
study. We found that the choroidal capillary flow area 
was greater in amblyopic eyes than in fellow eyes but was 
not significantly different from that in control eyes. After 
correcting for age, sex, axial length, and BCVA using 
GEEs, the CT and 3D-CCV were greater in the ambly-
opic eyes than in the fellow eyes, while no significant dif-
ferences were observed in the 3D-CVI. Amblyopia causes 

a thickening of the choroid and an increase in the flow 
area of choroidal capillaries and of large and medium 
vessels. Compared with the control eyes, amblyopic eyes 
had increased 3D-CVI and 3D-CVV but no significant 
differences in CT. Axial length remained the main causa-
tive effect of the changes relative to the control eyes, but 
the effect in amblyopia was not significant.

Changes in the choroidal structure of amblyopic eyes 
have been reported in numerous studies. A previous 
meta-analysis by Liu [21] yielded similar results to our 
study, with greater CT values observed in anisometropic 
amblyopic eyes than in fellow and control eyes, regard-
less of whether the axial length was matched. Some stud-
ies have reported thinner choroidal thickness in children 
with high myopic amblyopic eyes compared with high 
myopic eyes [22, 23]. Most of the subjects selected in 
previous studies were hyperopic or strabismic amblyopic 
children, suggesting that there are differences in choroi-
dal structure changes in amblyopic eyes with different 
refractive types and that choroidal changes in ambly-
opic eyes may be due to a combination of amblyopia and 
refraction.

The study by Huang et  al. [24] showed that the cho-
roidal capillary flow area was higher in amblyopic eyes 
than in both fellow eyes and control eyes, similar to our 
findings. Terada’s [8] study found an increase in vascular 
perfusion area in amblyopic eyes compared to control 
eyes, which was also similar to the findings in our study. 
In recent years, an increasing number of studies have 
focused on refractive states and choroidal changes. Some 
studies have suggested that the choroid plays an impor-
tant role in the process of emmetropization in children 
[25]. The choroid can adjust the position of the retina 
both by adjusting its thickness to the refractive state 
(choroidal modulation) and by releasing cytokines that 
regulate extracellular matrix remodeling in the sclera. 
In a study of patients with refractive parametric ambly-
opia treated with one year of refractive correction and/
or masking, a decrease in the vascular component and 
an increase in the stromal component of the choroid in 
amblyopic eyes were observed after treatment, whereas 
no significant changes were observed in nonamblyopic 
eyes [26], suggesting that the effect of amblyopia on the 
choroid is associated with a delay in emmetropization.

Some studies have obtained different findings regard-
ing the CVI. In the study by Baek et  al. [27], which 
showed increased CVV in amblyopic eyes, the CVI was 
found to be higher in amblyopic eyes than in fellow eyes 
but was negatively correlated with CT, suggesting a rela-
tive decrease in choroidal vascularity and insufficient 
blood supply in amblyopic eyes. A similar conclusion 
was reached by Furundaoturan et  al. [28], who found 
a decrease in the CVI and an increase in the stroma in 

Table 4 Eye parameters and their relationships with 3D-CVI in 
the GEE model

3D-CVI three-dimensional choroidal vascularity index, AE amblyopic eye, FE 
fellow eye, CE control eye, AL axial length, BCVA best-corrected visual acuity
a GEE adjusted for age, sex, axial length and BCVA
∗ statistical significance (P < 0.05)

Group 3D‑CVI Betaa 95%  CIa Pa

mean ± SD

0–3 mm area AE 0.400 ± 0.064 Reference

FE 0.385 ± 0.048 -0.013 -0.044, 0.18 0.407

CE 0.352 ± 0.087 -0.054 -0.104, -0.003 0.038∗

AL 0.012 -0.004, 0.027 0.142

Age -0.008 -0.021, 0.004 0.189

Sex 0.001 -0.032, 0.034 0.942

BCVA 0.013 -0.047, 0.073 0.679

Table 5 Eye parameters and their relationships with 3D-CVV in 
the GEE model

3D-CVV three-dimensional choroidal vascularity volume, AE amblyopic eye, FE 
fellow eye, CE control eye, AL axial length, BCVA best-corrected visual acuity
a GEE adjusted for age, sex, axial length and BCVA
∗ statistical significance (P < 0.05)

Group 3D‑CVV  (mm3) Betaa 95%  CIa Pa

mean ± SD

0–3 mm area AE 1.099 ± 0.205 Reference

FE 0.966 ± 0.187 -0.114 -0.226, -0.002 0.046∗

CE 0.864 ± 0.291 -0.235 -0.399, -0.030 0.023∗

AL -0.020 -0.079, 0.039 0.511

Age -0.015 -0.057, 0.027 0.481

Sex 0.048 -0.330, 0.165 0.441

BCVA -0.083 -0.330, 0.165 0.512
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patients with anisometropia amblyopia. The study by 
Cevher et  al. [29] found a lower CVI in hyperopic ani-
sometropia amblyopia eyes than in fellow and control 
eyes, suggesting that hyperopia affects choroidal struc-
ture. These studies, however, did not correct for the axial 
length and analyzed only a single layer of horizontal scans 
through the central macular sulcus that included only the 
blood vessels in a 750 μm or 1000 μm region. The differ-
ences in the image range of the scanning protocol could 
be the source of inconsistency between the conclusions 
drawn by that study and the present one.

In our study, before correction, the CT was higher in 
amblyopic eyes than in fellow and control eyes. After 
correction for axial length, age, sex and BCVA using the 
GEEs, the CT of the amblyopic eyes differed only from 
that of the fellow eyes and was not significantly different 
from that of the control eyes. Additionally, axial length 
significantly affected choroidal thickness (P = 0.002). 
Several previous studies have demonstrated [10, 11] that 
axial length has an effect on the choroid; specifically, 
there is a negative correlation between axial length and 
CT, with shorter axial lengths associated with thicker 
choroids. Therefore, it is necessary to correct the axial 
length in choroid-related studies to account for eyes with 
differences in axial length.

No relationship was identified between age and the 
choroidal vascular structure in our study. Some previ-
ous studies have shown that age also affects the choroid; 
a study by Xiong et  al. [12], for example, showed that 
the CT in orthopic and mildly myopic children aged 
6–19 years progressively decreased with age. Other stud-
ies have yielded different results, such as Read et al. [10], 
who showed a gradual thickening of the choroid with age 
during childhood. The CT is greater in children aged 10 
to 12 years than in children aged 7–9 years and children 
aged 4–6  years. Zhou et  al. [13] showed that CT, CVV, 
and choroidal stroma volume (CSV) all decreased with 
age in the macular subfovea region; however, the CVI was 
not affected by aging. In our study, no effect of age was 
found on the choroid because the patients were younger 
and had a relatively small age distribution.

The choroidal differences in amblyopia found in this 
study were mainly reflected with respect to the fellow 
eyes and not to the control eyes. Most likely due to the 
comparative study of both eyes from the same subjects, 
we were better able to control for the effects of age, sex, 
genetic and environmental factors. Vincent’s [30] study 
found that in refractive reference patients, differences 
in ocular biological parameters mainly originated in 
the posterior segment of the eye, such as vitreous cav-
ity depth (VCD), axial length (AL), and CT. Patients 
showed similar characteristics in other ocular biomet-
ric parameters in both eyes, such as corneal curvature, 

anterior chamber depth (ACD), and crystalline lens 
power. Therefore, studies in patients with monocu-
lar amblyopia can better control for other unknown 
confounding factors and obtain relatively reliable 
conclusions.

There are limitations in our study. It is well-known 
that hyperopia affects the choroidal vascular struc-
ture. For instance, hyperopia causes thick choroids [16, 
31]. To eliminate the effects of hyperopia on the cho-
roid, it would be ideal to compare children with simi-
lar hyperopia grades (along with age- and sex-matched 
controls but with normal corrected visual acuity), but 
the mean refraction of the amblyopic eyes in our study 
was + 5.09 ± 2.01, and children with similar refraction 
but without amblyopia were difficult to find, so an ideal 
control group could not be found. To minimize the 
interference of refraction between different groups, the 
GEE equation was used in our study to correct for the 
effect of axial length age and sex on choroidal vascular 
parameters. The expectation is that the resulting results 
would yield the true effect of amblyopia on the choroid 
as much as possible.

The sample size of this study is small. This study 
included patients in different stages of treatment, which 
may have partially influenced the results. Some studies 
have shown that treatment in amblyopic eyes increases 
BCVA, decreases CVI, and increases stromal volume 
[26]. Further longitudinal studies are needed to clarify 
the effect of treatment on the choroid. Due to the need 
to conduct an SS-OCTA examination, only patients who 
could cooperate with the examination for acquiring high-
quality images were included in this study. Some younger 
patients and those with poor visual acuity were excluded, 
which may have led to some degree of bias in the results. 
Therefore, future studies with larger populations and fol-
low-up are needed to clarify the effects of amblyopia in 
the choroid.

In conclusion, in amblyopic eyes, the choroid was 
thicker and the capillary flow area and vascular volume 
were greater than those of normal eyes, which may be 
related to a delay in emmetropization. Future studies on 
amblyopia should focus on the mechanism underlying 
the causes of choroid changes in amblyopia. In the future, 
choroidal vascular changes may be used as a potential 
indicator for predicting and treating amblyopia.
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