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Abstract
Diabetic retinopathy (DR), one of the leading causes of visual impairment and blindness worldwide, is one of 
the major microvascular complications in diabetes mellitus (DM). Globally, DR prevalence among DM patients is 
25%, and 6% have vision-threatening problems among them. With the higher incidence of DM globally, more DR 
cases are expected to be seen in the future. In order to comprehend the pathophysiological mechanism of DR in 
humans and discover potential novel substances for the treatment of DR, investigations are typically conducted 
using various experimental models. Among the experimental models, in vivo models have contributed significantly 
to understanding DR pathogenesis. There are several types of in vivo models for DR research, which include 
chemical-induced, surgical-induced, diet-induced, and genetic models. Similarly, for the in vitro models, there are 
several cell types that are utilised in DR research, such as retinal endothelial cells, Müller cells, and glial cells. With 
the advancement of DR research, it is essential to have a comprehensive update on the various experimental 
models utilised to mimic DR environment. This review provides the update on the in vitro, in vivo, and ex vivo 
models used in DR research, focusing on their features, advantages, and limitations.
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Background
Diabetic retinopathy (DR) is a leading cause of visual 
defects and blindness, and the number of cases is 
increasing globally. Approximately 25% of diabetes mel-
litus (DM) patients have been diagnosed with DR [1]. In 
a recent meta-analysis by Teo et al. [2], the global preva-
lence of DR is approximately 22%, and that of vision-
threatening DR is about 6%. The prevalence is higher 
among the Middle East, North Africa, and Western 
Pacific countries. With the increasing DM population 
worldwide, the global prevalence of DR is expected to 
rise from 103.2 million in 2022 to 160.5 million by 2045 
[2].

202For effective management of DR, an in-depth 
understanding of the underlying molecular mechanisms 
is vital 202. The development of newer medical thera-
peutic options for DR requires an in-depth investigation 
into molecular and morphological changes and func-
tional outcomes. The success of these investigations, to 
a great extent, is determined by the choice of appropri-
ate experimental models. Experimental models refer to 
investigational subjects possessing artificially induced 
characteristics mimicking human conditions. These 
experimental models could comprise of animals that are 
subjected to induction of disease characteristics using 
various methods such as chemicals or surgical proce-
dures. Some animals naturally develop diseases suffi-
ciently similar to those found in humans and are used as 
experimental models.

Considering the importance of the experimental mod-
els of DR, the key characteristics of various in vitro, in 
vivo, and ex vivo models commonly used in DR research 
are reviewed and summarised in this work. The ben-
efits and limitations of these models are also discussed 
to understand their context-specific utility. PubMed and 
Medline search engines were used to gather publica-
tions published between 1960 and 2021. This was accom-
plished using a single or combination of keywords, such 
as diabetic retinopathy, streptozotocin , in vivo, in vitro, 
and ex vivo. Only full-paper publications published in 
English were selected for this review.

In vivo experimental models
Chemical-induced DR
Background
The most common method of inducing diabetes pharma-
cologically is to use STZ, a naturally occurring antibiotic 
in Streptomyces acromogenes, or alloxan, a pyrimidine 
derivative [3]. STZ and alloxan destroy the pancreatic 
β-cells in the islets of Langerhans to exert their diabeto-
genic properties. There is a wide range selection of ani-
mals (e.g., rats, mice, rabbits, cats, dogs, pigs, non-human 
primates, and zebrafish) that have been studied to under-
stand diabetes development through the administration 

of STZ or alloxan. Despite the splendid array of animal 
models, rodents are commonly used [3]. This could be 
due to their rapid breeding rate, small size, and short life 
span. Moreover, they are cost-effective. It must be noted 
that the type of animals selected is based on the objec-
tive of particular studies. Nevertheless, to date, no animal 
model has been able to reproduce a complete human DR 
in terms of vascular and neural complications in both the 
early and late progression of the disease [4].

Methods of induction
STZ. STZ is a glucosamine–nitrosourea compound tar-
geting insulin-producing β-cells in the pancreas to mimic 
diabetogenic properties in humans [5]. There are more 
than a hundred analogues known. STZ occurs in nature 
as a 50–50 combination of (α and β anomers) [6]. The 
fundamental STZ structure has been kept in approxi-
mately one-third of the analogues, although altera-
tions include acetylation, alkylation, and nitroso group 
substitution. Acetyl derivatives have the same activity 
as their parent molecule [6]. In an early report in 1963, 
STZ administration at 65 mg/kg was reported to induce 
type 1 DM (T1DM) in rats [7]. A higher dose of STZ is 
required for mice, which ranges from 150 to 400 mg/kg 
of STZ [5]. STZ administration also has been reported to 
induce type 2 DM (T2DM) through multiple low-dose 
injections, in combination with other chemicals (such 
as nicotinamide), or with dietary manipulations for the 
induction of diabetes in rodents and dogs [5–9]. In gen-
eral, STZ-induced onset hyperglycaemia occurs within 
48  h post-STZ administration regardless of the dosage 
and the hyperglycaemic condition can be maintained 
for up to 22–24 months [10]. STZ direct uptake to the 
pancreatic β-cell is aided by the glucose transporter 2 
(GLUT2) receptor [11]. STZ executes its cytotoxic effects 
on the pancreatic islets of Langerhans through its nitro-
sourea moiety, where it causes DNA alkylation [3]. Other 
than that, DNA damage by STZ occurs due to increased 
production of reactive oxygen species (ROS) and nitric 
oxide (NO) [11]. STZ can be administered through 
intraperitoneal, intravenous, or subcutaneous injection 
resulting in prolonged hyperglycaemia and other charac-
teristics of diabetes, such as polyuria and polydipsia [12].

Other than rodents, several animal species such as 
zebrafish, rabbits, dogs, pigs, beagles, and monkeys, 
are sensitive to the pancreatic β-cell cytotoxic effects of 
STZ [12–16]. Zebrafish were usually induced with mul-
tiple STZ doses, whereas huge animals such as rabbits, 
dogs, and nonhuman primates were usually induced with 
a single dose protocol. STZ-induced zebrafish model 
remained in a hyperglycaemic state around 80 days after 
induction of diabetes [15]. In contrast, huge animals may 
stay in a hyperglycaemic state for more than four years 
post-induction [16].
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Alloxan. In 1942, before STZ was discovered, alloxan 
was employed to induce diabetes in animal models [17]. 
Alloxan is a uric acid derivative directly targeting pancre-
atic cells [18]. It was first created by Wöhler and Liebig 
by combining uric acid and nitric acid [19]. McLetchie 
and his colleagues discovered that intravenous injection 
of alloxan resulted in hypoglycaemia owing to necro-
sis in the pancreas islets of Langerhans while research-
ing kidney problems in rabbits [17]. The death of cells 
resulted in the release of insulin reserves, resulting in 
hypoglycaemia, followed by the establishment of diabetes 
within 24 h. Similar to STZ, alloxan can also be admin-
istered via intraperitoneal and subcutaneous injection 
[19]. While rabbits induced with alloxan usually did not 
change their food intake frequency, rodents induced with 
alloxan usually have polydipsia, polyuria, glycosuria, and 
hyperglycaemia, all of which are common symptoms of 
diabetes [17]. The suppression of glucokinase, an enzyme 
implicated in the glucose-insulin regulation system and 
expressed in the liver and pancreas, is triggered by a 
direct cell death associated with alloxan. The compound 
can be toxic to liver and kidney cells, although toxicity 
can be prevented with careful dosage. Owing to the mode 
of action of alloxan being specific to pancreatic β-cells, 
the appropriate dosage is required to avoid possible tox-
icity accumulated in liver and kidney cells [20]. Neverthe-
less, a diabetic induce agent by alloxan is challenging to 
administer to animals due to its low stability in water at 
room and body temperature [17, 20]. All diabetic animal 
models administered with alloxan, including mice, rats, 
dogs, rabbits, and pigs, have experienced damage to their 
pancreatic β-cells and lead to DR due to retina-induced 
lesions [21–25].

STZ vs. Alloxan. Due to the higher ease of use and 
efficacy, STZ has become the gold standard agent over 
alloxan in inducing diabetes in vivo. This is due to more 
excellent stability of the STZ compound and extremely 
fast result in disease progression [26]. Conversely, alloxan 
is less favourable as it produces unpredictable and incon-
sistent results. Therefore, it could be more efficacious 
[27]. However, unsuccessful hyperglycaemia induction 
in experimental animals happens. It is associated with 
resistance to STZ or alloxan, which may be related to 
hormones or genetic indifference of different species or 
gender [27, 28].

Effects on retina
STZ. The induction of this chemical has been shown 
to induce DR in a wide range of animals, as mentioned 
above, and various dose regimens have been developed, 
depending on the type of animals. Nevertheless, rodents 
remain the most preferred animal model for the charac-
terisation of the disease and therapeutic drug investiga-
tions. These animals are favoured even more than the 

non-human primates owing to their ability to develop 
hyperglycaemia one week after a single dose of STZ 
administration. They have been reported to exhibit vari-
ous non-proliferative DR (NPDR) features.

In the STZ-induced mice model, the retinal morpho-
logic alterations observed were thinning of the ganglion 
cell layer (GCL), inner plexiform layer (IPL), outer plexi-
form layer (OPL), and total retinal thickness as early as 
3 to 4 weeks post-STZ induction [29]. Other than that, 
there were reduced retinal ganglion cells (RGCs) with 
increased astrocytes number, accompanied by reac-
tive gliosis within 4 to 6 weeks post-STZ induction 
[30]. Meanwhile, at ten weeks post-STZ induction there 
was thinning of the inner nuclear layer (INL) and outer 
nuclear layer (ONL) [3]. For the microvascular changes, 
enhanced vascular permeability, pericyte loss, and 
microglial changes were reported at eight weeks [31, 
32], neovascularisation (formation of new vessels) at 16 
weeks [33], thickening of the capillary basal lamina at 
17 weeks [34], and increased of acellular capillaries and 
pericyte ghosts within 6 to 9 months of STZ induction 
[10, 35, 36]. Continuous inflammation that occurs due 
to chronic hyperglycaemia leads to leukostasis (leuko-
cytes plug within vessels) [35–38] and is associated with 
increased acellular capillary formation [35]. Hemody-
namic and electroretinogram (ERG) instability were also 
reported within four weeks post-STZ induction includ-
ing a decrease of arteriolar and venular flow velocity with 
decreased diameter and shear rates [39, 40], a reduced 
total oscillatory potential (OP) and OP3 amplitudes with 
prolonged of implicit times OP2-3 [41, 42]. In contrast 
to Kurihara et al. [41] and Sasaki et al. [42], the majority 
of studies failed to demonstrate the same declined trend 
for amplitudes of a-/b-wave, highlighting a conflicting 
outcome of mice as DR animal models [36]. Although 
multiple studies have recognised STZ as a diabetogenic 
chemical agent, researchers have yet to demonstrate con-
sistent evidence on the effect of STZ diabetic-induced 
apoptotic and loss of RGC, thus remaining the subject of 
concern in recent times. It is worth noting that few stud-
ies demonstrated different numbers of RGC post-diabetic 
induction, such as an increased RGC apoptosis after two 
weeks [43] and decreased RGC numbers within 6 to 10 
weeks after STZ administration [43, 44], supporting the 
notion of inconsistent results. Contrary to the aforemen-
tioned studies, others found no profound RGC apoptosis 
or GCL cell loss within ten months of post-hypergly-
caemia [36, 38, 45]. These contrasting observations may 
be due to different strains of mice or regimens of STZ 
administration.

As opposed to mice, lower doses of STZ are required 
to induce diabetic in rats [5]. Several strains of rats 
were used to develop the DR model, including Sprague 
Dawley (SD), Wistar, and Lewis. Changes in the retinal 
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morphology observed in rats were similar to those in 
mice. Thinning of the IPL and ONL were reported to be 
as early as four weeks post-STZ induction in SD rats [46, 
47]. However, some studies also reported an increased 
total retinal layer thickness, which has been suggested to 
be due to retinal oedema [48, 49]. In fact, several authors 
reported retinal oedema as a retinal morphological fea-
ture of DR [50, 51]. Retinal oedema usually occurs after 
12 to 16 weeks of STZ administration. Wistar and Lewis 
rats displayed degeneration of capillaries with the forma-
tion of pericyte ghosts within eight months of hypergly-
caemia [52]. At the same time, Lewis and SD rats exhibit 
neuronal loss in GCL. Although the onset of retinal 
lesions varies with different rat strains, numerous phe-
notypes have been documented, including blood-retinal 
barrier (BRB) breakdown two weeks after diabetes onset 
[53], increased acellular capillaries containing degener-
ated intramural pericytes and apparent proliferation of 
endothelial cells after eight weeks [54], and thickening 
of basement membrane after one year [55]. Throughout 
the literature, studies have shown that DR development 
in rats has been linked to neuronal and glial damage 
before prominent vascular changes. It is identical to the 
mice model whereby progressive apoptosis and thinning 
of retinae were evident after 3 to 4 weeks of post-induc-
tion hyperglycaemia. Likewise, prominent gliosis with 
increased glial fibrillary acidic protein (GFAP) expression 
was observed at an early stage of four weeks of hyper-
glycaemia [56–58]. In addition, multiple studies also 
revealed a reduction of cells within GCL [52, 58 , 205] 
and astrocytes [53, 57] and an increase of microglia [52, 
58] at 4 to 6 weeks of post-STZ induction. Subsequently, 
other vascular events include increased acellular capil-
laries [52, 59], leukostasis [60], thickening of capillary 
basement membrane [61], and pericyte loss [58, 61] were 
apparent at a more extended period (4 to 8 months) post-
STZ induction. Other than the morphological changes, 
retinal dysfunction was also observed through reduced 
visual-behaviour responses [62], reduced a-/b-wave 
[56, 59, 63] and OP amplitude [56, 59] with delayed OP 
[63],increased retinal vessel diameter[203 , 204], retinal 
oxidative stress markers [64], retinal pro-inflammatory 
cytokines level [65] and retinal pro-angiogenic markers 
[64, 65].

Besides rodents, animals of different species have been 
examined with various results on disease development. 
For instance, 3 to 4 weeks post-STZ administration, 
zebrafish displayed thinning of IPL and photoreceptor 
segment layer, damaged cone receptor, and neuronal loss 
[15]. In contrast, rabbits induced with a single dosage of 
STZ acquired retinal and retinal haemorrhages, vascular 
lesions, venous thrombosis, and proliferative retinopathy 
after 4.5 months of induction [66]. STZ-induced DR dogs 
exhibit retinal lesions similar to those of human DR. In 

an extensive study of the DR dogs model, STZ admin-
istration caused a thickening capillary basement mem-
brane (BM) after one year, pericyte and smooth muscle 
cell loss after four years, and microaneurysms, acellular 
capillaries, and intraretinal microvascular abnormali-
ties (IRMAs) after seven years of hyperglycaemia [16]. 
Numerous studies have shown that loss of pericytes and 
microaneurysm formation depend on age, with younger 
animals exhibiting the features faster than older ones 
[67]. STZ-induced diabetic pigs displayed enhanced BRB 
permeability, INL, and GCL thinning and thickening cap-
illary BM thickening [68, 69]. Accordingly, the tight junc-
tions in the retina were weakened [68]. Monkeys induced 
with STZ remain diabetic for 6 to 15 years. However, no 
significant ocular changes were observed [70]. They usu-
ally developed hypertension and ischemic retinopathy 
with cotton-wool spots, and hyperfluorescent patches 
usually occur once they were hypertensive.

Alloxan. FOT_FB mice induced with alloxan acquired 
pericyte and RGCs loss post one week of induction, along 
with microaneurysms within three weeks post induc-
tion [29]. In another study using C57/Bl6 mice, alloxan 
induction caused microglial changes (thicker cell bodies 
and shorter dendrites) in the retina [31]. However, Gau-
cher et al. [31] failed to observe neuronal apoptosis, glial 
activation, microaneurysm, and haemorrhage formation, 
as demonstrated in comparable models. Nevertheless, 
they observed a significant reduction in the b-wave/a-
wave amplitude ratio and an increment in the OP latency 
period in ERG after three months of alloxan induction 
[31].

Contrariwise to STZ, studies of alloxan-induced DR in 
rat models were limited. Neovascularisation and cata-
racts were observed between two to nine months and a 
year, respectively, post-alloxan administration [32, 71]. 
Pericyte ghosts, acellular capillaries, and thicker capil-
lary BM were observed 15 months after alloxan induc-
tion [26, 71]. BRB breakdown, Müller glia growth, and 
endothelial enlargement were also reported with this 
induction model in rats [31, 72]. Five doses of alloxan 
within five weeks in dogs causes retinopathy compara-
ble to DR in humans. However, dogs only acquired DR 
53 to 69 months after the start of hyperglycaemia [22]. 
Alloxan-induced dogs developed haemorrhages, acel-
lular capillaries, pericyte loss, and microaneurysms 
once DR appeared, making this a feasible model of PDR. 
Alloxan-induced pigs developed Müller cell contraction-
promoting activity, which may be detected as early as 30 
days following alloxan administration and can last up to 
90 days [73]. These pigs developed cataracts [73], BRB 
breakdown, capillary collapse, and pericyte ghosts 60 
days after receiving alloxan [44]. In contrast to dogs, the 
alloxan-induced pig model displayed several changes in 
NPDR.



Page 5 of 14Sadikan et al. BMC Ophthalmology          (2023) 23:421 

The comparison of the chemical structure, mechanism 
of action, advantages, and disadvantages between STZ- 
and alloxan-induced models was described in Table 1.

Surgical-induced in vivo models
Background
One of the most extensively used methods to induce DR 
surgically in in vivo models is the removal of the pan-
creas, also known as pancreatectomy. Pancreatectomy 
can effectively mimic type 1 diabetes. Removing at least 
90–95% of the pancreas can effectively induce hypergly-
caemia in dogs [74]. Pancreatectomy was first discovered 
to increase blood sugar levels in dogs [75] following the 
invention of the complete pancreatectomy technique by 
Pfeiffer [76] in dogs. This technically challenging method 
has since been commonly used to create DR models, 
especially in larger animals, including cats, monkeys, and 
dogs.

Methods of induction
In cats’ models, pancreatectomy is usually performed 
with or without alloxan injection, which destroys pan-
creatic β-cells to induce T1DM [77]. In monkeys, the 
animals received insulin and oral pancreatic enzymes 
treatment after pancreatectomy. A detailed pancreatec-
tomy method in the dog model has been fully described 
by Kumar et al. [78].

Effects on retina
Cats. Hyperglycaemia developed one to two weeks after 
pancreatectomy and was associated with early symptoms 
of DR, including thickening of the capillary BM as early 
as three months post-surgery [79]. Other than thickening 
of the capillary BM, microaneurysms were also acquired 

within five to six years post-surgery, followed by the 
development of retinal haemorrhages, capillary non-per-
fusion, and neovascularisation over the course of five to 
nine years [80]. Yet, two out of three long-term diabetic 
cats studied at seven years post-pancreatectomy devel-
oped only micro-aneurysms with no signs of haemor-
rhages or capillary non-perfusion. In contrast, the other 
cat showed no significant signs of DR [81].

Monkeys. Up to 94% of the alloxan-induced monkey 
models show no significant DR development within five 
years of hyperglycaemia after the surgery. It took 6 to 15 
years post-surgery to develop mild blood-retinal barrier 
disruption [70]. Removal of the pancreas alone failed to 
induce DR in monkeys. However, spontaneous- or phar-
macologically-induced hypertension in hyperglycaemic 
monkeys resulted in ischemic retinopathies [70]. Similar 
findings were seen in chemical-induced DR in monkeys. 
This suggests that retinal changes in monkeys depend on 
their hypertensive state, which may or may not correlate 
with the severity of the DR [82].

Dogs. Although dogs receiving pancreatectomy were 
used for DM research, there were no specific studies on 
the retina post pancreatectomy.

Diet-induced in vivo models
Background
A high-fat or high-calorie diet is one of the main factors 
that exacerbate the progression of DM and its complica-
tions [83, 84]. Past studies have extensively utilised obese- 
or diabetic-induced rodents as models to understand the 
effects of these diets on the progression of DR. Other 
than these diets; the galactose diet was also commonly 
used to mimic hyperglycaemic changes in the retina [85].

Table 1 Comparison of the chemical structure, mechanism of action, advantages and disadvantages between STZ- and alloxan-
induced model

Streptozotocin(STZ) Alloxan
Source Glucosamine–nitrosourea compound derived from Streptomyces 

achromogenes
Synthesised from uric acid oxidation

Mechanism of Action ● Selective pancreatic β-cell uptake via GLUT2
● Generates ROS
● Causes DNA fragmentation
● Acts as a NO donor
● Generates Adenosine triphosphate (ATP) de-phosphorylation
● β-cell necrotic death

● Selective pancreatic β-cell uptake via the 
GLUT2
● Inhibit glucokinase
● Generates ROS
● β-cell necrotic death

Advantages ● Rapid simulation of natural T2DM disease progression
● Induced diabetes remains longer
● Cost-effective
● Easy handling (stable at 37 °C within one hour)

● High selective loss of pancreatic β-cell due to 
its inhibitory effect on glucokinase

Disadvantages ● Poor standardisation
● Carcinogenic to human

● Can be toxic to liver and kidney cells
● May cause spontaneous regeneration of β-cells
● Less stable in water at room and body 
temperature
● High variability
● High mortality



Page 6 of 14Sadikan et al. BMC Ophthalmology          (2023) 23:421 

Methods of induction
High-fat diet (HFD). HFD induction can be given alone 
or together with single or multiple low doses of STZ to 
induce insulin resistance, diabetes, and complication. 
There were two types of variations of HFD, (a) high-fat 
diet alone or (b) high-fat diet with a combination of high-
sucrose or high-fructose diet (HSHF or HFHF). These 
methods of induction were mainly used in rodents. The 
HFD contains 40–65% kcal of fat compared to 4.5-10% 
kcal of fat in normal pellets [86–90]. For the variation 
with sucrose or fructose, 20–50% of sucrose or fructose 
were added to the diet [87, 88]. The initial age of HFD 
induction also varies among studies, where it ranges as 
early as five weeks old [91] to 10 weeks old [89]. Rodents 
were either induced with STZ at the start of HFD or after 
2 to 8 weeks of HFD [86, 89, 90]. The impact of the per-
centage of fat in the diet, the presence of sucrose and 
fructose, the initial age of starting the diet, induction 
with STZ, and the duration of the diet will influence the 
findings on the animal models [92].

Galactose. Engerman and Kern [85] were the first to 
describe the animal model of DR induced by high-galac-
tose diet. Animals such as mice, rats, rabbits, dogs, and 
zebrafish, have been described to have DR-like changes 
with a high-galactose diet [93]. The percentage of galac-
tose used in the literature varies from 30 to 50% [94–96]. 
The initial age to start the galactose diet also varies from 
4 weeks in rats [95] to 6 to 18 months old in dogs [25, 94]. 
The duration of diet also varies as short as seven months 
[97] to a long period of 41 months [98].

Effects on retina
HFD. The retinal lesion developed through HFD, with 
or without the addition of STZ induction, has been 
reviewed explicitly by Clarkson-Townsend et al. [88]. In 
summary, the retinal morphological changes in rodents 
receiving HFD were mixed. Several studies showed 
decreased retinal layer thickness and vascular density, 
increased acellular capillaries formation, vascular per-
meability, and vascular bleeding. In contrast, there were 
studies showing opposite retinal morphological changes 
or no changes at all. Other observed changes in retinal 
tissues include decreased a-/b- wave, delayed OP ampli-
tude in ERG, and increased lipid peroxidases and pro-
inflammatory cytokines.

Galactose. Retinal changes observed in mice on a high-
galactose diet were endothelial cell loss and increased 
acellular capillaries at 15 months of hypergalactosaemia 
[99, 100], and pericyte loss, microaneurysms, and retinal 
thickening at 21 months of hypergalactosaemia [99, 101]. 
Other changes observed include the presence of peri-
cyte ghosts and capillary BM thickening at 18 months 
[4] and gliosis by 28 months of hypergalactosaemia [102]. 
Galactose-fed animals, however, lack the metabolic 

irregularities experienced in chronic hyperglycaemia and 
advanced DR; hence this method is of relatively lesser 
interest [102].

Genetic in vivo models
Background
In vivo, genetic models of DR have been used to inves-
tigate the pathogenesis and understand the treatment’s 
mechanism [103]. Spontaneous, strain-specific, and 
genetically edited mutations are among the genetic mod-
els that have been developed. Five identified DR mouse 
models include Ins2Akita [104], non-obese diabetic (NOD) 
[102], db/db (Leprdb) [105], Akimba [106], and Kimba 
[107]. All of these mouse models varied in the mode of 
inheritance, disease aetiology, pathology, and disease 
progression [4, 103].

Another standard genetic model for DR is the rat 
model, which is slightly larger than mice but manage-
able at a lower cost. There are six established genetic DR 
rat models as follows; Zucker diabetic fatty (ZDF) [108], 
Otsuka Long-Evans Tokushima fatty (OLETF) [109], 
bio breeding (BB), WBN/Kob [110], spontaneously dia-
betic Torii (SDT) [111], and Goto-Kakizaki (GK) [112]. 
They are classified as monogenic and polygenic models 
according to the strains. The DR rat monogenic models 
are ZDF, OLETF, and BB, with independent mutations 
that perturb different nodes of the DR disease pathway 
[4]. Meanwhile, the DR rat polygenic models are SDT, 
WBN/Kob, and GK, which demonstrated the genetic 
complexity of DR [4].

Types of genetic models
Ins2Akitamouse. It is a standard model with a missense 
mutation in the Insulin 2 gene representing T1DM [104]. 
It has a dominant point mutation causing a conforma-
tional change in the insulin protein, resulting in protein 
accumulation in pancreatic β-cells and ultimately leading 
to β-cell death [113, 114]. The DR onset begins as early as 
four weeks of age [104].

NOD mouse. Another model for T1DM is the NOD 
mouse, where pancreatic β-cells are destroyed by 
CD4 + and CD8 + cells via autoimmune response [115, 
116]. It is a polygenic model with several loci associated 
with the disease phenotype relatively similar in humans. 
NOD mice suffer from infiltration of dendritic cells and 
macrophages in pancreatic islets leading to inflamma-
tion, hyperglycaemia, and apoptosis of insulin-producing 
β-cells [117, 118]. The DR onset begins when spontane-
ous hyperglycaemia occurs in these mice at 12 weeks 
of age. A higher incidence of diabetes was observed 
in female compared to male rats, where at 30 weeks of 
age, around 80% of females and only 20% of males were 
reported to have diabetes [118].
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Lepr (db/db) mouse. Alternatively, db/db (Leprdb) mice 
is an option for a DR study focusing on T2DM. It carries 
a mutation in the leptin receptor owing to leptin receptor 
deficiency which develops hyperglycaemia and obesity 
after four to eight weeks in homozygous mice [119, 120].

Kimba mouse. The Kimba mice is a transgenic nondia-
betic model of proliferative retinopathy resulting from 
overexpression of vascular endothelial growth factor 
(VEGF) driven by the rhodopsin promoter in rhodop-
sin-expressing cells [121, 122]. The proliferative changes 
that usually occur at a later stage of DR developed early 
in this model. Therefore, the usage of this model limits 
the potential research in understanding the mechanism 
before the proliferative stage of DR.

Akimba mouse. The Akimba mouse is a model devel-
oped by cross-breeding Kimba mice with Ins2Akita mice. 
This model inherits both the hyperglycaemic changes 
from the Ins2Akita model and the proliferative changes 
seen in the Kimba model [106, 123].

ZDF rat. A missense mutation in the leptin receptor 
gene, Lepr, causes insulin tolerance and excessive body 
weight gain in the ZDF DR rat model, which is adequate 
for severe spontaneous type 2 diabetes [108, 124]. The 
hyperglycaemia onset started at six weeks of age and con-
tinues throughout time.

OLETF rat. OLETF rat was created by selective breed-
ing of Long-Evans rats that developed obesity, hypergly-
caemia, and glycosuria [125]. It possesses a mutation in 
the G-protein coupled receptor GPR10’s initiation codon, 
which causes obesity and is ideal for mimicking T2DM 
[126]. The hyperglycaemia started at six months of age 
[127].

BB rat. BB rat is a monogenic DR model with a frame-
shift mutation in the immune-related nucleotide-bind-
ing protein gene Ian4, also known as Ian5, Iddm1, and 
Gimap5. This mutation causes the lymphopenia phe-
notype linked to auto-immune diabetes development 
[128–130].

WBN/Kob rat. The WBN/Kob rat is a spontaneous 
polygenic DR model, where the onset of hyperglycaemia 
appeared late, after 17 months old. This hyperglycaemia 
only affected male rats. Therefore, there might be the 
influence of sex hormones or chromosomal disorders. 
The diabetes appearance in this breed was suggested to 
be due to chronic pancreatitis [131]. Based on Mori et al. 
[132], chromosome 7, specifically the Pdwk1 (pancreatitis 
and DM in WBN/Kob locus 1) region, was thought to be 
affected in this breed.

SDT rats. Another polygenic DR model specifically for 
nonobese T2DM is SDT rats. SDT rat is a substrain of SD 
rat [133]. The Dmsdt1 was found to be the major gene 
locus responsible for pancreatic damage in this model 
[134]. The development of diabetes is more prominent 
in male rats, where glycosuria in male SDT rats appeared 

faster in the 20th week compared to females in the 45th 
week [135, 136].

GK rats. GK rat is a substrain of non-obese Wistar rat 
[137]. The mechanism behind the diabetes development 
of this model was suggested to be due to the anomaly 
of pancreatic IGF2 [138]. The development of diabetes 
is similar in male and female rats, where hyperglycae-
mia usually starts at four to six weeks of age [137]. The 
pancreas has an impaired capacity for β-cell neogenesis 
during the first four weeks of age, which is considered 
a pre-diabetic stage. The advantage of this breed is that 
diabetic cataracts appear late. Therefore, retinal micro-
vasculature using fundus photography or OCT can be 
visualised easily [139].

Effects on retina
Ins2Akitamouse. The onset of DR appeared in the 8th 
week of hyperglycaemia indicated by increasing retinal 
vascular permeability and reactive microglia [140]. By 
the 12th week, abnormal swelling in somas, axons, and 
dendrites of RGCs was reported. As a result of inflam-
mation, an increase in acellular capillaries and leukocytes 
in the vascular wall was observed after 36 weeks [104]. 
The reduction of IPL and INL thickness resulted in lower 
cholinergic and dopaminergic amacrine cell expression, 
as evidenced in the retina after six months of hypergly-
caemia [104, 141]. However, part of the rd8 mutation on 
crb1 gene causes no retinal thinning or retinal architec-
ture disruption at six months of age [103]. Previous stud-
ies indicated C57B1/6 N substrain (embryonic stem cells 
origin & mouse lines) contains the crb1 gene in homo-
zygous form; meanwhile, C57B1/6J substrain possesses 
the wild type of crb1 gene [103]. The rd8 mutation in 
C57B1/6 N substrain may influence the retinal degenera-
tion findings. Therefore, researchers should look into this 
mutation when using this model [140].

NOD mouse. In the fourth week of hyperglycaemia, 
NOD mice showed apoptosis of pericytes, endothe-
lial cells, and RGCs with retinal capillary BM thicken-
ing [142]. In comparison, Azrad-Leibovich et al. [102] 
reported the presence of retinal oedema with the absence 
of microaneurysm capillary leakage as early as two weeks 
after hyperglycaemia onset. However, in another study by 
Zorrilla-Zubilete et al. [143], retinal oedema was absent 
at two weeks of hyperglycaemia onset. Reduced arteriole 
diameter was reported at three weeks of hyperglycaemia 
onset [144]. Similarly, Shaw et al. [145] reported vaso-
constriction, degeneration of major vessels with abnor-
mal microvessels, and disordered focal proliferation of 
vessels four months after hyperglycaemia onset. Other 
than morphology and vascular changes, increased retinal 
angiogenic VEGF level was also reported with this model 
[142].
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Lepr (db/db) mouse. Reduction in RGCs number and 
increase in the total central retina, INL, and photore-
ceptor layer thickness were identified after six weeks of 
hyperglycaemia [146]. Gliosis reactivation and pericyte 
loss were reported at 4.5 to 13 months from the onset 
of hyperglycaemia [146]. There were also increased BRB 
breakdown, retinal capillary density, retinal angiogenic 
VEGF level, oxidative stress markers, and pro-inflam-
matory cytokines observed at 5 to 13 months of hyper-
glycaemia onset [147, 148]. The ERG findings showed a 
reduction of a-, b-, and c-waves at 24 weeks old [149]. 
Samuels et al. [150] observed that the reduction of the 
b-wave preceded the reduction of the a-wave at 16 weeks 
old.

Kimba and Akimba mice. The INL and ONL were 
reduced in Kimba mice at seven days postnatal [121]. By 
28 days postnatal, microvascular abnormalities and cap-
illary dropout were observed and continued until nine 
weeks of age, where pericyte loss was detected [151, 152]. 
The pericyte loss and retinal neovascularisation with dif-
fuse vascular leakage were found in the late-stage DR, 
which were well-characterised by this breed [106, 153]. 
The Akimba mouse has leaky capillaries, tortuous vessels, 
and microaneurysms in the retina by 8 weeks old [106]. 
With disease progression, increased photoreceptor loss, 
decreased retina thickness, increased oedema persis-
tence, and retinal detachment were observed [106].

ZDF rat. The capillary BM thickening and cell nuclear 
density increased at 6 to 7 months of age [154], whereas 
increased apoptotic capillary cells were observed after 
20 weeks of age [155]. Szabó et al., 2017 [156] observed 
retinal oedema and microglial activation at 32 weeks of 
age with no retinal cell apoptosis. At an early age (6 to 
7 months old), the absence of acellular capillaries and 
pericyte loss were reported, but both conditions then 
appeared at a later stage [157–159]. Lowering of b-wave 
amplitude in ERG was seen as early as 12 weeks of age 
[155].

OLETF rat. Microvessel-related symptoms appeared 
six weeks after hyperglycaemia onset, including leuko-
cyte entrapment in the retinal microcirculation [125]. 
The reduction in pericytes and damage of endothelial 
cells were detected at three months post hyperglycae-
mia [131]. The increased thickness of the capillary BM, 
microaneurysms, capillary formation in loops, and tor-
tuosity were also detected [125, 160]. The ERG findings 
of OLETF rats were prolonged latency of OP amplitude 
at 12.5 months old [161]. However, no acellular capillar-
ies formation and pericyte ghosts were observed in this 
model [162].

BB rat. BB rats acquired retinal lesions such as peri-
cyte loss, capillary degeneration, and microaneurysms 
by eight to eleven months old [163–165]. Meanwhile, 
Blair et al. [166] reported increased BRB breakdown and 

abnormal retinal microvasculature at eight months of 
age.

WBN/Kob rat. This breed acquired late-onset hypergly-
caemia (9 to 12 months of age). Therefore, capillary BM 
thickening [167] and neovascularisation [168, 169] also 
appeared later at 14 to 24 months old. However, retinal 
degeneration, such as loss of rods and cones (outer reti-
nal layer), appeared early before hyperglycaemia onset 
[167, 170].

SDT rat. Retinal detachment with fibrous prolifera-
tion, retinal ischemia with neovascularisation, leukosta-
sis, increased number of apoptotic cells in the GCL and 
INL, pericyte loss, and vascular lesions were reported in 
aged SDT rats (after 12 months of age) [133, 171–173]. 
A distinguishing feature similar to retinal detachment 
observed in humans was the formation of massive retinal 
folds with significant leakage around the optic disc [133, 
171–173]. However, the absence of microaneurysms 
makes them a more suitable model for studying NPDR.

GK rat. An increase in BRB permeability was reported 
by three months old, followed by an increase in the endo-
thelial/pericyte ratio at seven months old [139, 174]. 
Retinal microvascular cells apoptosis, higher acellu-
lar capillary formation, and pericyte loss occurred even 
in mild hyperglycaemic GK rats at one year old [175]. 
Additionally, retinal layer thickening and reduced a- and 
b-waves amplitude in ERG were reported at 12 months 
old [176]. Retinal angiogenic markers (VEGF and matrix 
metalloproteinase (MMPs)) were noted to be increased 
by seven months old of age and not earlier than that [177, 
178].

In vitro model
Since pathological retinal angiogenesis is the main reason 
for progression in DR, most in vitro cell culture utilises 
isolated endothelial cells to mimic human angiogenic 
processes [179]. The most commonly used retinal endo-
thelial cells are bovine retinal endothelial cells (BRECs) 
[180], human retinal endothelial cells (HRECs) [181], 
and Rhesus monkey retinal and choroid endothelial 
cells (RF/6a) [182]. However, some studies also utilised 
non-retinal specific endothelial cells and focused on the 
angiogenesis process. The non-retinal specific endothe-
lial cells used include human umbilical vein endothelial 
cells (HUVECs) [183], human microvascular endothelial 
cells (HMVECs) [184], and human dermal microvascu-
lar endothelial cells (HMVEC-D) [185]. The cells were 
treated with high glucose concentrations, imitating a dia-
betic condition. The target mechanism in in vitro studies 
using endothelial cells is an angiogenic process. There-
fore, the commonly assessed markers include growth 
factors such as VEGF, extracellular matrix proteins such 
as MMPs, and signalling pathways involving oxidative 
stress, inflammation, and apoptosis.
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Other cell types used in the in vitro model were specific 
retinal cells, such as pericytes, fibroblasts, macrophages, 
and Müller or other glial cells [186]. Glial cells are impor-
tant neuronal tissue supporters, which assist communi-
cation between vessels and neurons. Studies using glial 
cells usually explore the relationship between vascu-
lopathy and neuropathy in DR [53]. Among all the glial 
cells, Müller cells were commonly used in studying DR 
[187]. The disadvantage of in vitro culture is the absence 
of a retinal microenvironment that can be found in vivo 
model [188].

Ex vivo models
For ex vivo models of DR, studies usually used organo-
typic retinal explant cultures to mimic the structure of 
the tissues nearer to in vivo environment, overtaking 
some of the constraints of the in vitro studies [189]. Most 
studies using retinal explant models did research on 
assessing the toxicity of potential new chemicals or drugs 
[190] or evaluating retina functionality [191]. The initial 
concept of using retinal explants to investigate prolifera-
tive retinopathy was initiated by Forrester et al. [192], 
where bovine retinal explants cultured in collagen gels 
were used. Currently, the use of collagen was replaced 
by synthetic Matrigel, which improved vessel sprouting 
[189] and provided consistent results. This replacement 
was also recommended by the international consensus 
[193]. Other than bovine, mice retinal explant cultures 
were commonly used to study neovascularisation [194]. 
Vitreoretinal angiogenesis progression can also be iden-
tified using time-sequential imaging in an ex vivo model 
[195]. Until present, retinal explants are normally cul-
tured with stimuli that portray the retinal environment 
in DR, such as high glucose, oxidative stress, or advanced 
glycation end-products (AGE) [196]. Other than that, 
the retina from the in vivo DR model was used for the 
ex vivo in vitro culture once the retinal neovascularisa-
tion development had taken place to represent the PDR 
process [197–200]. The use of retinal explants still needs 
to be improved in research, possibly due to the expertise 
requirements to isolate retinas and their unsuitability for 
long-term experimental periods [201].

Conclusions and perspectives
Experimental models of DR are used to study the patho-
physiology, mechanisms, and potential treatments for the 
disease. These models aim to replicate the key features 
and progression of DR observed in humans. Among all 
the experimental models, in vivo model is most pref-
erable due to several limitations of in vitro and ex vivo 
models, such as the absence of a retinal microenviron-
ment and complex retina isolation, respectively. The in 
vivo model has the most significant advantage, as it can 
closely mimic DR-like human conditions. Among in vivo 

models, chemically induced diabetes by STZ is the most 
commonly used in vivo model. Although experimental 
models can be used to predict disease mechanisms or in 
potential treatment, they may not accurately be trans-
lated to human conditions as they do not fully replicate 
the complexity and heterogeneity of the disease seen in 
humans. However, the use of specific experimental mod-
els may target particular mechanism which is limited in 
human due to the limitation of the sample. Therefore, the 
researchers must choose an appropriate experimental DR 
model to address their research objectives.

Following findings from experimental models, clinical 
studies involving human subjects, such as clinical tri-
als and observational studies, is vital to provide essential 
evidence that considers the genetic and environmental 
factors that influence disease pathophysiology, progres-
sion, and response to therapies. Clinical studies also 
ensure that the findings from experimental models are 
rigorously evaluated and their clinical implications are 
thoroughly understood. In summary, while experimental 
models of DR provide crucial insights into the underlying 
mechanisms and aid in developing treatment strategies, 
clinical validation is necessary to ensure the findings can 
be translated into meaningful outcomes for patients.
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