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Abstract
Background Artificial intelligence (AI) has the potential to increase the affordability and accessibility of eye disease 
screening, especially with the recent approval of AI-based diabetic retinopathy (DR) screening programs in several 
countries.

Methods This study investigated the performance, feasibility, and user experience of a seamless hardware and 
software solution for screening chronic eye diseases in a real-world clinical environment in Germany. The solution 
integrated AI grading for DR, age-related macular degeneration (AMD), and glaucoma, along with specialist auditing 
and patient referral decision. The study comprised several components: (1) evaluating the entire system solution 
from recruitment to eye image capture and AI grading for DR, AMD, and glaucoma; (2) comparing specialist’s grading 
results with AI grading results; (3) gathering user feedback on the solution.

Results A total of 231 patients were recruited, and their consent forms were obtained. The sensitivity, specificity, 
and area under the curve for DR grading were 100.00%, 80.10%, and 90.00%, respectively. For AMD grading, the 
values were 90.91%, 78.79%, and 85.00%, and for glaucoma grading, the values were 93.26%, 76.76%, and 85.00%. 
The analysis of all false positive cases across the three diseases and their comparison with the final referral decisions 
revealed that only 17 patients were falsely referred among the 231 patients. The efficacy analysis of the system 
demonstrated the effectiveness of the AI grading process in the study’s testing environment. Clinical staff involved 
in using the system provided positive feedback on the disease screening process, particularly praising the seamless 
workflow from patient registration to image transmission and obtaining the final result. Results from a questionnaire 
completed by 12 participants indicated that most found the system easy, quick, and highly satisfactory. The study also 
revealed room for improvement in the AMD model, suggesting the need to enhance its training data. Furthermore, 
the performance of the glaucoma model grading could be improved by incorporating additional measures such as 
intraocular pressure.

Implementing and evaluating a fully 
functional AI-enabled model for chronic 
eye disease screening in a real clinical 
environment
Christos Skevas1, Nicolás Pérez de Olaguer2, Albert Lleó2, David Thiwa3, Ulrike Schroeter1, Inês Valente Lopes1*, 
Luca Mautone1, Stephan J. Linke4, Martin Stephan Spitzer1, Daniel Yap5 and Di Xiao6

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12886-024-03306-y&domain=pdf&date_stamp=2024-1-31


Page 2 of 12Skevas et al. BMC Ophthalmology           (2024) 24:51 

Background
As the global prevalence of chronic eye diseases such 
as diabetic retinopathy (DR), glaucoma, and age-related 
macular degeneration (AMD) continues to rise, early 
detection and management of these conditions are 
increasingly critical. Traditionally, the screening and 
diagnosis of these diseases have relied heavily on manual 
inspection and interpretation of retinal images by oph-
thalmologists. However, this process is not only time-
consuming and resource-intensive but also susceptible to 
inter-observer variability and human error.

In recent years, artificial intelligence (AI), and more 
specifically deep learning, has emerged as a powerful 
tool to revolutionize the field of ophthalmology. AI algo-
rithms have demonstrated high performance in the auto-
mated grading the severity of DR, AMD, and glaucoma 
using retinal images. These advancements have not only 
shown the potential to enhance diagnostic accuracy and 
efficiency but also to reduce the burden on healthcare 
systems and improve patient outcomes.

Recent advances in AI have revolutionized the field 
of DR grading using retinal images. Early publications 
in 2016 by Gulshan et al. showed the effectiveness of a 
deep learning algorithm for detecting referable DR from 
colour fundus photographs with high sensitivity and 
specificity. Subsequent studies by Abràmoff et al. (2018), 
Ting et al. (2017), and Gargeya and Leng (2017) demon-
strated similar performance [1–4]. In a recent study, Li et 
al. (2022) developed a deep ensemble algorithm capable 
of detecting both diabetic retinopathy (DR) and diabetic 
macular edema (DME) [5], which exhibited performance 
that was comparable to or even surpassed that of oph-
thalmologists. Several recent review papers by Sebastian 
(2023), Tsiknakis (2021), and Dubey (2023) offer compre-
hensive insights into this rapidly evolving area and can be 
referenced for further exploration [6–8].

AI has also shown promising results in detecting and 
classifying AMD severity from retinal images. Burlina et 
al. (2018), Ting et al. (2017), and Peng et al. (2019) showed 
that deep-learning models could achieve higher accuracy 
in the automated classification of patient-based AMD 
severity using bilateral colour fundus photographs and 
outperformed retinal specialists [3, 9, 10]. Several recent 

review papers in this area can be referenced, including 
those by Leng et al. (2023), Paul et al. (2022), and Dong et 
al. (2021) on AI for AMD screening using colour fundus 
images or OCT images [11–13].

For glaucoma detection, the early AI models were pri-
marily focused on analysing various features such as the 
optic disc and cup-to-disc ratio [14, 15]. Further stud-
ies have explored the use of retinal vessel segmentation 
and texture analysis to improve the performance of AI-
based glaucoma detection systems [16, 17]. In a system-
atic review and meta-analysis conducted by Buisson et al. 
(2021), deep learning models demonstrated similar per-
formance to ophthalmologists in diagnosing glaucoma 
from fundus examinations [18]. The reviews (Atalie 2020, 
Yousefi 2023) discuss its potential to improve diagnostic 
capabilities but also point out its challenges and the need 
for careful validation in clinical practice [19, 20].

Despite the promising research and developments, 
their translation into real-world clinical practice remains 
a challenging endeavour. To date, there has been a grad-
ual deployment of AI models in software systems for 
DR screening over the past six years. Several AI-based 
screening systems, such as IDx-DR, Thirona Retina, Ret-
marker, EyeArt, iGradingM, Eyetelligence Assure, Reti-
nalyze, TeleEye MD, Airdoc-AIFUNDUS, and SELENA+, 
have been published and deployed in various clinical 
settings.

IDx-DR was validated on 900 patients in primary 
care sites in the USA, achieving a sensitivity of 87.2% 
and a specificity of 90.7% on the 819 participants that 
were analysable [1]. Based on these results, it gained 
the FDA certificate for use by healthcare providers 
for automatically detecting more than mild diabetic 
retinopathy (mtmDR). IDX-DR was also validated in 
the Hoorn Diabetes Care System in the Netherlands, 
achieving a sensitivity of 91% and a specificity of 
84% for detecting referable DR [21]. In a pilot study, 
IDx-DR showed a higher percentage agreement with 
human ophthalmologists in both DR positive and DR 
negative cases, suggesting it may be more reliable for 
autonomous screening [22].

EyeArt was validated in more than 30,000 patients 
in the English Diabetic Eye Screening Programme in 
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the UK, achieving a sensitivity of 95.7% and a specific-
ity of 54.0% for referable retinopathy [23]. In another 
validation in the USA,it achieved similar sensitivities 
and specificities for detecting both mtmDR (95.5% 
sensitivity and 85.3% specificity) and vision-threaten-
ing diabetic retinopathy (VTDR, 95.2% sensitivity and 
89.5% specificity) on 893 patients [24]. SELENA + was 
validated on 1574 patients in a mobile screening pro-
gram in Zambia, achieving a sensitivity of 92.25% and 
specificity of 89.04% for referable DR and a sensitiv-
ity of 99.42% for VTDR and a sensitivity of 97.19% for 
DME [25]. In a small-cohort pilot study on tele-oph-
thalmology, it demonstrated 100% referral accuracy 
for known 9 diabetic retinopathy patients among 69 
validation patients [26]. An offline AI-based DR grad-
ing system was validated on populations (236 par-
ticipants) from two endocrinology outpatients and 
three Aboriginal Medical Service clinics in Australia, 
achieving a sensitivity of 96.9% and a specificity of 
87.7% for detecting referable DR [27]. The VoxelCloud 
Retina was validated on 15,805 patients at 155 diabe-
tes centres in China, achieving an 83.3% sensitivity 
and a 92.5% specificity to detect referable DR [28]. In 
a recent study, an AI system RAIDS that can detect 
seven eye conditions, including common abnormali-
ties like DR, ARMD, and glaucoma, was validated in 
real-world clinical settings [29]. The system achieved 
sensitivities and specificities for DR, ARMD, and refer-
rable glaucoma of 83.7% and 88.1%, 81.3% and 98.6%, 
and 97.6% and 95.0%, respectively.

While the abovementioned systems have been vali-
dated and approved for clinical use, there is limited 
information available regarding their real-world per-
formance and acceptance among end-users, indicating 
a need for further research in this area. Only the study 
of the offline AI-based DR grading system [27] investi-
gated the experience and acceptance, which is the first 
for an AI system to complete the accuracy analysis and 
the system’s end-user experience analysis. Conversa-
tions regarding the influence of socio-environmental 
factors on deep learning model performance have been 
relatively scarce. A noteworthy contribution to this 
discourse comes from Beede et al. at Google Health 
who conducted a human-centered observational study 
on a deep learning system in clinical care in Thailand 
[30]. Their research highlighted the impact of end-
users and environmental factors, including lighting 
conditions, patient expenses, and model threshold set-
tings, etc. It underscores the urgency to develop meth-
odologies for designing and evaluating deep learning 
systems in clinical settings, emphasizing collaboration 
with the Human-Computer Interaction (HCI) commu-
nity [31, 32].

To address these gaps, this study aims to implement 
and evaluate a fully-integrated hardware and software 
solution and an automatic workflow in a real clinical 
environment. By evaluating the system’s performance, 
diagnostic performance, and user experience, we hope 
to shed light on the feasibility, acceptability, and accu-
racy of AI-assisted chronic eye disease screening. Fur-
thermore, we aim to understand the challenges and 
opportunities associated with the real-world deploy-
ment of AI in ophthalmic disease screening and man-
agement. To the best of our knowledge, this study 
represents one of the pioneering attempts to incorpo-
rate screening for the three chronic diseases within an 
integrated retinal imaging and AI-grading system sup-
ported by a cloud solution.

Methods
The study uses a cloud-based tele-ophthalmological 
platform (TeleEye MD) combined with a retinal cam-
era (DRS Plus, Icare Finland Oy, Finland) and a data 
transmission device. The study focused on several 
studying points:

1) Workflow for chronic eye disease screening from 
patient retinal image capture till report generation;

2) AI-assisted grading for DR, AMD and glaucoma;
3) Human grader’s audit based on the AI grading 

results;
4) Feedback from patients and health professionals;
5) System efficacy.

Participants
The patients included in this prospective study were 
recruited at the Ophthalmology Outpatient Depart-
ment of medical retina and glaucoma, of the University 
Medical Center Hamburg-Eppendorf, Germany. The 
medical staff approached the patients and explained 
the goals of the study and the examinations that had 
to be performed. After informed consent was given by 
all patients, a trained study nurse (US) who was hired 
to support the study, performed patient examinations 
using the screening system. All patients recruited 
in the study completed the necessary examinations. 
The study patients shared the same premises and the 
same hardware as all other patients. The recruitment 
occurred from December 2021 to October 2022.

Ethics and inclusion criteria
This prospective study was registered and approved 
by the Ethics Review Board of the Medical Associa-
tion of Hamburg (process number: 2021-10574-BO-ff ) 
and follows the recommendations of the Declaration 
of Helsinki. The patients could withdraw from the 
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study at any time by informing the supervisors. Inclu-
sion criteria were an age of at least 18 years and eyes in 
which clear media allowed a sharp fundus photo.

Screening workflow
Patients underwent an ocular examination utilizing a dig-
ital colour fundus imaging device. The process was facili-
tated by a study nurse using a patient registration and 
data transmission tool - the bridging device. To maintain 
confidentiality, unique project IDs were assigned to each 
patient’s data, which were then transferred to the cloud-
based system. This system, powered by an integrated 
AI, graded the patients’ colour fundus images for DR, 

AMD and glaucoma. These AI-graded images were sub-
sequently managed by the cloud system and subjected to 
audit by the study’s specialist (CS).

The patients performed the following examinations: 
objective refraction, non-contact eye pressure measure-
ment, best corrected visual acuity (BCVA) and after 
pupillary dilation, fundus photography of the retina 
(optic disc, macula and retinal periphery), and anterior 
chamber photos focused on the lens.

The following picture (Fig.  1) illustrates the hardware 
and its configuration used in the workflow.

Figure 2 depicts the workflow of the screening process. 
It consists of the following steps:

Fig. 2 Screening workflow and software configuration

 

Fig. 1 Hardware configuration for the screening service
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1. The study nurse inputs the recruited patient’s 
information, including the patient’s project ID, 
ethnicity, age and gender, on the bridging device and 
transfers them into the cloud system.

2. The study nurse guides the patient into position 
for eye image capture using the DRS Plus camera. 
Once the patient is properly positioned, the study 
nurse activates the camera and captures an image 
of the patient’s retina. One macula-centered image 
(45-degree field of view) per eye is captured. The 
image is instantly transmitted to the bridging device. 
The bridging device uses its cloud service to analyze 
the image and provides a quality assessment (QA) 
score within seconds. If the QA score is “inadequate,” 
the bridging device will notify the study nurse on the 
screen, prompting them to recapture the image.

3. After the QA process, on the bridging device, the 
study nurse selects one or two macula-centered 
images from each eye and submits them to the 
patient’s cloud account for DR, AMD, and glaucoma 
gradings by the AI.

4. An auditor (CS) with an auditor account (i.e., an 
ophthalmologist), can log into the cloud system and 
view the patient’s colour fundus images from both 
eyes with their raw resolutions and select human 
grading options for DR, AMD, and glaucoma. Then, 
a final report can be generated.

5. The study nurse has access to the cloud web portal to 
check patiens’ report readiness. Once the final report 
is ready, the study nurse can download the report 
from the platform.

Disease grading protocol
This study’s disease grading protocols were established 
on the foundations of the International Clinical Diabetic 
Retinopathy Disease Severity Scale and the International 
Clinical Diabetic Edema Disease Severity Scale, used 
for DR and DME respectively [33]. DR grading ranged 
from the grading levels ‘No Apparent Retinopathy’, ‘mild 
Non-Proliferative DR (NPDR)’, ‘moderate NPDR, severe 
NPDR’, and ‘proliferative DR’. DME grading was catego-
rized as ‘Diabetic Macular Edema Absent’, progressing 
through ‘Mild’, ‘Moderate’, and ‘Severe’ DME. In the case 
of AMD, the grading commenced from ‘No Apparent 
AMD’, escalating to ‘Early’, ‘Intermediate’, and ‘Advanced’ 
AMD. Glaucoma grading was simplified to ‘Referable’ 
(suspect glaucoma) or ‘Non-Referable’ based solely on 
image analysis of the optic nerve head. No further anal-
ysis has been performed e.g. IOP (intraocular pressure) 
measurement or nerve fibre layer analysis. Lens opacity 
was evaluated as ‘Normal’, ‘Non-Significant Media Opac-
ity’, and ‘Significant Media Opacity’. During the auditing 
process, the auditor could select the appropriate grading 

options for DR, AMD, and glaucoma levels, as well as 
lens opacity status, and the grading results would be 
reflected in the final report.

However, the AI grading process only provided refer-
able or non-referable results for DR, AMD, and glau-
coma, where “referable DR” indicated more than ‘Mild 
NPDR’, and “referable AMD” indicated any condition 
more severe than ‘Early AMD’. If the configuration of 
the optic nerve head was suspected, then referral to an 
ophthalmology specialist was advised. If the image is 
ungradable judged by the AI grading, the patient should 
be considered referred.

Automatic AI grading algorithms and platform settings
The DR grading method was described in an early paper 
with subsequent improvements made afterwards [34]. 
The development of the AMD grading model was based 
on an EfficientNet deep learning backbone with custom-
ized classification layers. The model was trained and 
validated on 4,218 images and achieved a specificity of 
95.23% and a sensitivity of 98.14%. The development of 
the glaucoma grading algorithm was based on Efficient-
Net deep learning backbone with customized classifica-
tion layers. 3,2828 images were used for the deep learning 
model’s training and validation. The model achieved a 
sensitivity of 91.48% and a specificity of 92.94%.

The three AI models were integrated into the cloud sys-
tem by utilising the Lambda Service approach provided 
by Amazon AWS. Besides the AI grading and human 
auditing, the cloud system also provides the functions of 
clinic management and patient health data management. 
System testing and staff training.

Prior to the patient recruitment process, the engineer-
ing team meticulously tested both the hardware con-
figuration and the comprehensive screening workflow. 
Two demonstrations were conducted by the engineer-
ing team to the clinical staff in the study. The screening 
organization account and the user accounts for screen-
ing study nurses, managers and auditors were created 
and the hardware and software user manuals and train-
ing materials were provided. The training for the clinical 
staff was provided by the two trainers (NO & AL). The 
training consisted of how to use the bridging device for 
patient registration and how to use the DRS Plus camera 
for image capture, as well as checking image quality and 
exam submission for the imaging study nurse. The audi-
tor (CK) was trained on how to log in and use the audit-
ing page in the cloud system. Grading protocols were 
discussed and conformed to. Following the training, the 
staff’s utilization and proficiency with the system were 
overseen until they demonstrated independent capability 
in its operation.

The study nurse performing the examination was also 
trained to explain the project information sheet and 
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patient consent form to recruited patients. Patient ques-
tionnaire forms were provided to patients to collect 
patient feedback for the AI screening service.

Data analysis
System efficacy analysis
The efficacy of the AI-based eye disease screening sys-
tem was analyzed by addressing several critical aspects. 
Firstly, real-time QA was evaluated during the image 
acquisition process. Secondly, the AI grading procedure 
was assessed. The images were analyzed using cloud com-
puting to produce three different diseases’ grades, which 
were then shown on the bridging device. The promptness 
in the generation and availability of these results to the 
clinicians was analyzed. The final aspect evaluated was 
the time required for a human auditor to review a single 
case.

Disease grading analysis
All de-identified data were exported from the AWS cloud 
server and imported into an Excel spreadsheet for further 
analysis.

The exported data include three main parts: (1) general 
patient information recorded; (2) AI grading results: AI-
based gradings for left/right eye identification, image QA, 
and AMD, DR, Glaucoma three diseases finally; (3) audit-
ing results: auditor’s grading for DR levels, DME levels, 
AMD levels, glaucoma normal/suspect, image ungrad-
able/gradable, and lens opacity, auditor comment, follow-
up screening period, and ophthalmologist referral period.

Sensitivity, specificity, positive predictive value 
(PPV), negative predictive value (NPV) and AUC were 

calculated to evaluate the grading accuracy of the three 
diseases.

Participant feedback analysis
Following the acquisition of images and the initial grad-
ing by the AI, patients were invited to participate in a 
comprehensive survey aimed at capturing their experi-
ences and attitudes towards the AI-based eye disease 
screening system. To gather this valuable feedback, a 
questionnaire consisting of four questions was adminis-
tered (Table 1).

Results
A total of 231 patients were recruited to the study with 
125 being male and the remaining 106 being female. This 
gives a gender ratio of approximately 1.18 males to every 
female.

The age summary in the dataset showed a mean age 
of approximately 63 years old. The standard deviation is 
16.9, indicating that the ages are fairly spread out. The 
youngest individual in the dataset is 19 years old, while 
the oldest is 95. The median age is 66, and the interquar-
tile range (IQR) is from 54.5 to 76.0 years old. It is worth 
noting that all 231 patients in the dataset self-identified 
as Caucasian.

Gradable patients and images
Out of the 231 patients initially assessed, four cases had 
both eyes ungradable according to the auditor, a find-
ing which was agreed upon by the AI. Interestingly, in 
one patient, the AI determined both eyes to be ungrad-
able, but this assessment was not shared by the audi-
tor. Among the remaining patients, eight had a single 
ungradable eye according to the auditor, and of these, the 
AI agreed with six of the assessments. On the other hand, 
the AI determined that 11 patients had a single ungrad-
able eye, but the grader disagreed with this assessment. 
These findings suggest that there may be discrepancies 
between the AI and human graders in assessing ungrad-
able eyes in patients. The ungradable images include 
“image half blurry”, “image half dark” and “significant 
media opacity” etc. situations (Fig. 3).

Disease distribution
In the auditing process, our online auditing page enabled 
the auditor to choose the ‘ungradable’ option for each of 
the three diseases independently.

Among the 231 patients assessed by the auditor, a total 
of 27 patients were identified as referable DR patients, 33 
patients were identified as referable AMD patients, and 
89 patients were classified as referable (suspect) glau-
coma cases.

In terms of ophthalmologist referrals, as determined 
by the auditor, 65 patients only needed to undergo 

Table 1 Questions in the questionnaire form for participants
Questions Selections*
How satisfied were you with your experience 
with the AI-based eye disease screening system? 
Please explain the reason you gave the score.

(1) Very dissatisfied; 
(2) Dissatisfied; (3) 
Neutral (4) Satisfied; 
(5) Very satisfied

Were you satisfied with the time consumption for 
completing your eye disease screening? Please 
explain the reason you gave the score.

(1) Very dissatisfied; 
(2) Dissatisfied; (3) 
Neutral (4) Satisfied; 
(5) Very satisfied

Did you use the web portal’s mobile app for your 
registration? If “Yes”, was it simple to use the app? 
Please explain the reason you gave the score.
(note: this question is not applicable for the study)

(1) So difficult; (2) 
Difficult; (3) Neutral 
(4) Easy; (5) So easy

Considering your complete experience with 
our medical facility, how likely would you be to 
recommend us to a friend or colleague? Please 
explain the reason you gave the score.

(1) Not at all; (2) 
Not recommend-
able; (3) Neutral 
(4) Recommend-
able; (5) Very 
recommendable

Free comments and suggestions.
*For each question, patients were instructed to select only one option from the 
five provided, with each option assigned a score ranging from 1 (lowest rating) 
to 5 (highest rating) based on the corresponding item number.
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regular screening without referrals. However, 149 
patients needed to be referred to ophthalmologists 
within 3 months, 12 patients required appointments 
within 4 weeks, and 5 patients needed urgent referrals 
within 1 week.

AI grading performance
The performance of the three models for grading DR, 
AMD, and glaucoma diseases was compared with the 
auditor’s assessment results. In the context of disease 
screening and patient referral, the evaluation of the 
performance of the three models was conducted at the 
patient level. The initial step in the workflow involved 
left/right eye identification based on colour fundus 
images. Given that these images are macula-centred and 
readily distinguishable, the left/right eye identification 
model achieved 100% accuracy. When calculating sensi-
tivity and specificity, any eyes deemed ‘ungradable’ by the 
auditor for a specific disease grading were categorized as 
‘referable’ cases for that disease. Conversely, if an image 
or eye is assessed as ‘ungradable’ by the QA model but is, 
in fact, considered gradable and normal by a human, it 
is counted as a false positive case. It is important to note 

that the PPV and NPV can be influenced by the disease 
prevalence value used. Considering that the sensitivity 
values for all three disease gradings are above 90%, with 
only a few misclassified cases, the results are presented 
here in the three tables (Tables 2, 3 and 4). Table 5 pres-
ents the statistical data of the false positive classifications 
under each disease and their “ophthalmologist referral” 
decisions from the auditor’s assessment based on other 
abnormal findings. The data contribution to the s miss 
classifications and their final referral decisions will bedis-
cussed in the discussion section.

System efficacy
Table  6 presents the performance metrics of four inde-
pendent AWS Lambda services used in this study. The 
QA Lambda service is specifically employed during the 

Table 2 DR AI grading accuracy summary
Statistic Value 95% CI
Sensitivity 100.00% 87.23–100.00%
Specificity 80.10% 73.98–85.32%
Positive Predictive Value * 37.33% 25.90–49.91%
Negative Predictive Value * 100.00% 97.79–100.00%
AUC 0.90 87–93%
* These values are dependent on German disease prevalence 10.60%

Table 3 AMD AI grading accuracy summary
Statistic Value 95% CI
Sensitivity 90.91% 75.67–98.08%
Specificity 78.79% 72.43–84.26%
Positive Predictive Value * 29.26% 19.12–41.16%
Negative Predictive Value * 98.90% 95.78–99.89%
AUC 0.85 79–90%
* These values are dependent on German disease prevalence 8.80%

Table 4 Glaucoma AI grading accuracy summary
Statistic Value 95% CI
Sensitivity 93.26% 85.90–97.49%
Specificity 76.76% 68.94–83.43%
Positive Predictive Value * 7.50% 3.43–13.89%
Negative Predictive Value * 99.82% 96.49–100.00%
AUC 0.85 81–89%
* These values are dependent on German disease prevalence 1.98%

Table 5 Ophthalmologist referral decided by the auditor for the 
patients under the false positive cases
Ophthalmologist Referral Decision from Auditor

False Positive DR False Positive AMD False Positive 
Glaucoma

Period Num-
ber of 
Patients

Period Num-
ber of 
Patients

Period Num-
ber of 
Patients

Within 1 
week

0 Within 1 
week

1 Within 1 
week

1

Within 4 
weeks

4 Within 4 
weeks

3 Within 4 
weeks

3

Within 3 
months

33 Within 3 
months

33 Within 3 
months

17

Not 
Required

4 Not 
Required

5 Not Re-
quired

12

Fig. 3 Examples of ungradable images
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image quality assessment step, while the remaining three 
Lambda services are concurrently triggered during the 
image grading step, enabling simultaneous execution. 
The average process time, measured after the services’ 
warm-up periods, represents the duration required for 
each Lambda service to complete its execution. Addi-
tionally, the memory allocation for each service is deter-
mined based on the structural characteristics of the deep 
learning models employed.

Based on the user observations and experiences, sev-
eral other important parameters reflect the efficacy of the 
system too:

  • Registering a patient takes an average of 45 s.
  • After capturing an image, the QA result is typically 

available in 6 s for it.
  • When submitting two images to obtain results, the 

process takes an average of 46 s for uploading and 
grading the images. Alternatively, grading images 
only takes an average of 30 s.

  • Auditing time for one case by the auditor is less than 
5 min.

Participant feedback
After completing the examinations for the study, patients 
were kindly asked to give us feedback by completing a 
questionnaire. A total of 12 questionnaire forms were 
collected from the participants to assess their feedback 
on the screening system. Regarding the question on 
“satisfaction with the screening system,” the average rat-
ing score was 4.00 on the rating scale from 1 (lowest) 
to 5 (highest). Out of the 12 patients, 4 selected “neu-
tral,” 4 selected “satisfied,” and 4 selected “very satisfied.” 
Among the seven comments received for this question, 
five patients expressed that the system was “Easy and 
quick” or simply “Easy.” One patient mentioned discom-
fort, stating that the device was “too tight in the mouth 
plus nose area,” which was related to the camera usage. 
Another patient mentioned having “no knowledge about 
the results.” For the question regarding “satisfaction with 
the time consumed for completing disease screening,” the 
average rating was 4.08. Three patients chose “neutral,” 
five chose “satisfied,” and four chose “very satisfied.” The 

five comments received in response to this question all 
emphasized the speed of the process, with phrases such 
as “Quick” or “Fast.” All 12 respondents rated their “likeli-
hood of recommending the facility” (question 4) as 4 or 
higher, resulting in an average rating of 4.33. Only two 
participants provided comments regarding their impres-
sions of the service. Both expressed a positive sentiment 
and referred to the intervention as “innovative.” The low 
number of patients who filled out the questionnaire can 
be attributed to fatigue after spending a number of hours 
in the clinic.

Discussion
In Germany, the scope of patient screening for chronic 
eye disease within the general health insurance system 
is currently limited to screening for DR in patients with 
confirmed diabetes mellitus. This process requires a for-
mal referral from a general practitioner to an ophthal-
mologist, who then carries out the examination. Despite 
these measures, it is noteworthy that only an average 
of 50% of diabetic patients adhere to the recommended 
ophthalmologist visits [35]. The screening for diabetic 
retinopathy is a solitary process, with no other healthcare 
professionals involved. The role of fundus photography 
grading, whether by professional graders or AI, is yet to 
be recognized in the German healthcare system [36, 37].

This study established a clinical setting wherein a 
healthcare provider could perform chronic eye disease 
screening using a combination of hardware and software 
solution. Additionally, the study explored methods for 
enabling remote screening audits involving specialists. 
To the best of our knowledge, this study represents one 
of the pioneering attempts to incorporate screening for 
diseases DR, AMD, and glaucoma within a single system.

In terms of the measured data, the DR model demon-
strated remarkable performance by accurately detecting 
all patients with DR disease, achieving a sensitivity of 
100%. Out of the 29 gradable AMD patients, the AMD 
model successfully identified 26 patients. The remain-
ing three patients were not detected, including one with 
“RPE Defects of the macula,” one with “choroidal nevus 
located superior to the optic nerve” and one patient with 
AMD in one eye. As for glaucoma grading, excluding the 
ungradable patients, a total of 85 patients were classified 
as “suspect glaucoma” and required referral according to 
the auditor’s assessment. The glaucoma model accurately 
identified 78 out of these 85 patients.

The specificities of DR, AMD, and glaucoma gradings 
appear to be relatively low compared to their sensitivities. 
However, upon closer investigation, several phenomena 
and facts emerge to explain these observations.

Regarding DR, among the false positive gradings, it 
was observed that 90% of patients required “ophthal-
mologist referral” according to the auditor. This suggests 

Table 6 Processing time of the deep learning models in the 
AWS cloud
AWS Lambda Service Process Time (ms)* Memory allo-

cation (MB)
QA 1000 1536
DR grading 2000 1536
AMD grading 1500 1024
Glaucoma grading 4000 4096
*Average process time of the warmed-up lambda services
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that the DR model detected certain fundus images with 
abnormalities resembling DR lesions or patterns similar 
to those, for instance, ten patients were identified with 
“referable AMD”. The others present with abnormalities 
such as “peripheral bleeding” and “laser scars”, etc. Col-
lectively, these various abnormalities contributed to a 
final false referral rate of only 10% among the false posi-
tive DR patients.

In the case of AMD, the false positive gradings exhib-
ited a similar pattern to that of the false positive DR 
gradings. Among these, 88% of the patients required an 
“ophthalmologist Referral”. This indicates that the AMD 
model identified certain eye images displaying abnor-
malities that resembled AMD lesions or patterns. Inter-
estingly, seven patients were classified as “referable” DR 
patients, suggesting that the presence of DR features 
influenced the AMD model’s grading. Additionally, other 
abnormalities such as “retinal scars"and “epiretinal mem-
brane”, etc.were observed. These various abnormalities 
contributed to a final false referral rate of only 12%.

In the context of Glaucoma, even among the false posi-
tive gradings, a substantial number (63.65%) necessitated 
an “ophthalmologist referral” In the remaining cases (12 
patients), no additional abnormalities were detected, 
except for one patient who exhibited “minor RPE defects”.

Furthermore, when combining all false positives (84 
patients),, we found that only 17 patients (20%) needed to 
follow the annual screening. All the remaining 67 patients 
needed to be referred to ophthalmologists within a time-
frame ranging from one week to three months. This 
analysis suggests that the AI system did not significantly 
increase the rate of incorrect referrals in the clinical trial 
for the three-disease screening.

Based on the analysis conducted, it is evident that 
the misgrading of DR and AMD, leading to false posi-
tives, was primarily due to the presence of other abnor-
malities that the models might not have been trained 

to differentiate as distinct diseases. Additionally, we 
observed that certain images displaying AMD or DR fea-
tures influenced the accurate classification of the two dis-
eases. In the case of glaucoma, as it relies solely on the 
image data around the disc region without considering 
measures such as intraocular pressure (IOP) and visual 
field, its sensitivity and specificity are relatively low.

Table  7 presents a comparative analysis of the grad-
ing performance of the systems introduced in the back-
groundsection of this paper. It is worth mentioning that 
RAIDS not only serves the same function as our system 
in grading three diseases but also extends its capabilities 
to identify other eye abnormalities. In contrast, the trials 
conducted for the other systems were exclusively centred 
on grading DR.

As previously mentioned, the factors related to human-
computer interaction can influence the performance 
of AI applications in real-world clinical settings [27]. In 
our study, we conducted preliminary investigations into 
these factors. We observed that only 5 out of the patients 
with both eyes were deemed ungradable. One contribut-
ing factor to this limited ungradability could be attrib-
uted to the well-established imaging room setup within a 
hospital environment and the generally high image qual-
ity produced by the fundus camera. Regarding the user 
experience of clinical staff, the feedback from the study 
nurse indicated that the patient registration device and 
the fundus camera were user-friendly and easy to operate 
for patient information input and image capture. Con-
sidering the seamless operation of the camera and the 
bridging device, we did not observe any substantial influ-
ence from other factors such as data transmission speed, 
the image acquisition and analysis workflow on the dis-
ease grading performance. The system received positive 
feedback from the medical staff involved in the auditing 
process. All these underscore the significance of a well-
designed human-computer interaction in clinical AI 

Table 7 Comparison of the performance of referable DR grading from different systems in clinic settings
IDx-DR
(DR)

EyeArt
(DR)

SELENA+
(DR)

Offline AI 
System*
(DR)

Voxel-
Cloud 
Retina
(DR)

RAIDS
(DR, AMD, and Glaucoma)

TeleEye MD 
(DR, AMD, and 
Glaucoma)

Validated on 900 patients
SE: 87.2%;
SP: 90.7%
IDx-DR 2.0
Validated on 1415 patients 
in the Hoorn Diabetes Care 
System
SE: 91%
SP: 84%
(Using EURODIAB criteria)

EyeArt v2.1
Validated on 30,405 
patients in the 
English Diabetic Eye 
Screening Pro-
gramme in the UK
SE: 95.7%
SP: 54.0%
Validated on 893 
patients
SE: 95.5%
SP: 85.3%

Validated on 1574 
patients
in a mobile 
screening pro-
gram in Zambia
SE: 92.3%
SP: 89.0%
Validated on 
69 patients in 
Australia
SE: 96.9%
SP: 87.7%

Validated 
on 236 
partici-
pants in 
Australia
SE: 96.9%
SP: 87.7%

Validated 
on 15,805 
patients 
at 155 
diabetes 
centres in 
China
SE: 83.3%
SP: 92.5%

Validated on 110,784 par-
ticipants from 65 healthcare 
centers in China
DR
SE: 83.7%
SP: 98.6%
AMD
SE: 88.1%
SP: 97.6%
Referral possible glaucoma
SE: 81.3%
SP: 95.0%

Validated on 231
Patient in this study
DR
SE: 100.0%
SP: 80.1%
AMD
SE: 90.9%
SP: 78.8%
Referral possible 
glaucoma
SE: 93.2%
SP: 76.8%

* From the Centre for Eye Research, Australia
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applications, as it can enhance both user experience and 
diagnostic accuracy.

However, we observed and experienced several limi-
tations that must be taken into account when interpret-
ing our results. Firstly, the sample size of our study was 
small, which may impact the accuracy of the three AI 
models we tested. Additionally, the ethnic background 
of our participants was limited to Caucasians only. We 
used only one camera in our study. Furthermore, we 
only collected feedback from a limited number of par-
ticipants, with only 12 forms collected. The grading and 
severity of diseases we assessed were based solely on the 
colour fundus images, and other imaging modalities or 
measurements, such as OCT or IOP, were not utilized to 
determine the ground truth. Looking forward, the devel-
opment and implementation of operator-independent 
methods show promise. This includes the further explo-
ration of smartphone-based visual field measurement 
tools and the utilization of virtual reality headsets, both 
of which hold potential for enhancing glaucoma screen-
ing in primary care settings. We hope that future studies 
can build upon our findings to address these limitations 
and further advance this field.

Conclusion
The implementation of the AI-based approach for 
screening three chronic eye diseases has demonstrated 
its effectiveness in real-world settings, especially when 
comparing the individual disease’s referral decisions and 
their combined referral rate. Both the screening staff and 
auditor have expressed positive feedback regarding the 
ease of use of the hardware and software platform. The 
incorporation of an auditing function has proven valu-
able for obtaining timely second opinions from experts, 
potentially applicable for facilitating remote screening.

The detection of multiple eye diseases carries signifi-
cant importance due to their potential to cause visual 
impairment, coupled with their increasing prevalence. 
Considering the ongoing global advancements in tech-
nology and the evolving demographic landscape in 
Germany, the integration of AI into disease screening 
approaches emerges as a logical and necessary progres-
sion. Continued research and development in this field 
will further refine the accuracy and effectiveness of AI 
systems, ultimately benefiting individuals affected by 
these chronic eye diseases.
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