
R E S E A R C H Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Zheng et al. BMC Ophthalmology          (2024) 24:242 
https://doi.org/10.1186/s12886-024-03504-8

BMC Ophthalmology

*Correspondence:
Tong Qiao
qiaojoel@163.com
1Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai 
Jiaotong University School of Medicine, Shanghai, China
2Department of Ophthalmology, Shanghai Children’s Hospital, School of 
Medicine, Shanghai Jiao Tong University, Lu Ding Road # 355,  
Shanghai 200000, China

Abstract
Background  Learning to perform strabismus surgery is an essential aspect of ophthalmologists’ surgical training. 
Automated classification strategy for surgical steps can improve the effectiveness of training curricula and the 
efficient evaluation of residents’ performance. To this end, we aimed to develop and validate a deep learning (DL) 
model for automated detecting strabismus surgery steps in the videos.

Methods  In this study, we gathered 479 strabismus surgery videos from Shanghai Children’s Hospital, affiliated to 
Shanghai Jiao Tong University School of Medicine, spanning July 2017 to October 2021. The videos were manually 
cut into 3345 clips of the eight strabismus surgical steps based on the International Council of Ophthalmology’s 
Ophthalmology Surgical Competency Assessment Rubrics (ICO-OSCAR: strabismus). The videos dataset was 
randomly split by eye-level into a training (60%), validation (20%) and testing dataset (20%). We evaluated two hybrid 
DL algorithms: a Recurrent Neural Network (RNN) based and a Transformer-based model. The evaluation metrics 
included: accuracy, area under the receiver operating characteristic curve, precision, recall and F1-score.

Results  DL models identified the steps in video clips of strabismus surgery achieved macro-average AUC of 1.00 
(95% CI 1.00–1.00) with Transformer-based model and 0.98 (95% CI 0.97-1.00) with RNN-based model, respectively. 
The Transformer-based model yielded a higher accuracy compared with RNN-based models (0.96 vs. 0.83, p < 0.001). 
In detecting different steps of strabismus surgery, the predictive ability of the Transformer-based model was better 
than that of the RNN. Precision ranged between 0.90 and 1 for the Transformer-based model and 0.75 to 0.94 for the 
RNN-based model. The f1-score ranged between 0.93 and 1 for the Transformer-based model and 0.78 to 0.92 for the 
RNN-based model.

Conclusion  The DL models can automate identify video steps of strabismus surgery with high accuracy and 
Transformer-based algorithms show excellent performance when modeling spatiotemporal features of video frames.
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Background
Strabismus, defined as any binocular misalignment, 
affects 0.8–6.0% of children and can lead to amblyopia, 
visual impairment, or even hampered visual system’s 
development if left untreated [1–4]. Strabismus surgery, 
successfully realigns the eyes by adjusting eye muscle ten-
sion or position [5, 6], thereby alleviating double vision 
and improving quality of life. Competence in strabismus 
surgery is crucial for ophthalmology residents worldwide, 
as recommended from the American Board of Ophthal-
mology (ABO) in the United States [7, 8]. In the United 
Kingdom [9], the ophthalmic specialty training curricu-
lum requires trainees to have completed 20 surgical stra-
bismus procedures by completion of training. In China, 
however, ophthalmology residents reportedly perform 
less surgery during their training [10] than their count-
parts in developed countries. Studies suggest that 50 
cases might be necessary for an ophthalmologist to reach 
proficiency in strabismus surgery [11]. Given these con-
cerns, it is imperative to explore ways to enhance the 
effectiveness of ophthalmology training programs, ulti-
mately better preparing trainees for performing strabis-
mus surgery.

To drive ophthalmic surgical trainees along the surgi-
cal learning curve in a competency-based setup, surgical 
educators must develop curricula with systematic skill 
and competency assessments to delegate appropriate 
responsibilities while ensuring patient safety. However, 
there is no universally accepted standard for strabismus 
surgery competency assessment worldwide. Typically, 
surgical skill is evaluated through the procedure’s constit-
uent steps or phases (e.g., conjunctival incision, exposure 
of muscle) using videography [12]. Residency training 
curricula assess surgical steps of intraoperative techni-
cal skill based on structured or unstructured rating scales 
[13–15], which are time-consuming, subjective, and 
highly variable. Therefore, an automated classification 
strategy for surgical steps is crucial to enhance trainees’ 
learning in surgical curricula and serve as an reliable tool 
for evaluating resident physicians’ performance.

Artificial intelligence (AI), particularly deep learning 
(DL), has the potential in automated ophthalmic surgi-
cal phase recognition. For cataract surgery, Charrière 
et al. proposed a statistical-based model for real-time 
analysis cataract surgery videos [16], while Primus et al 
[17]. adopted DL (recurrent neural network (RNNs)) to 
automatically assign cataract video frames to operation 
phases. More recently, our group reported a novel Trans-
formed-based DL algorithm of cataract phase-specific 
augmented reality (AR) guidance system. Our results 
demonstrating its superior performance compared to 
related works [18].

Despite advances in AI-assisted ophthalmic surgi-
cal phase recognition, strabismus surgery has received 

limited attention. This study aimed to develop and vali-
date a novel DL algorithm for automated detecting stra-
bismus surgery steps in the videos without manual 
intervention. We further compare the performance of the 
proposed DL algorithm with that of previous RNN-based 
DL algorithm.

Methods
Study design and datasets
In this retrospective cohort study, we collected videos 
of 496 eyes of strabismus surgery by five pediatric oph-
thalmologists from the Department of Ophthalmology, 
Shanghai Children’s Hospital (SCH), between July 2017 
and October 2021. The institutional review board (IRB) 
of SCH approved this study (identifier, 2021R065-F01), 
and a waiver of informed consent was granted due to the 
retrospective cohort of deidentified videos captured for 
training purposes. All methods followed the tenets set 
forth in the Declaration of Helsinki, and all videos were 
deidentified according to Health Insurance Portability 
and Accountability Act (HIPAA) [19].

All videos were captured by an integrated digital video-
capture system with Zeiss surgical microscopy. Based 
on the International Council of Ophthalmology’s Oph-
thalmology Surgical Competency Assessment Rubrics 
(ICO-OSCAR: strabismus) [20], we analyze eight steps 
in strabismus surgery: (1) conjunctival incision & Ten-
on’s dissection, (2) hooking rectus muscle, (3) exposure 
of rectus muscle, (4) placement of suture in muscle, 
(5) disinsertion of the rectus muscle, (6) use of caliper/
scleral ruler, (7) reattachment of muscle (intrascleral 
needle pass), and (8) conjunctival closure (when appro-
priate). Using ICO-OSCAR’s definitions for the eight 
steps, three pediatric ophthalmologists (XXZ, WYF, XYL 
and YH) manually identified the start and end of the dif-
ferent surgical steps, and cut the videos into clips. The 
dataset included 3345 videos of strabismus surgery pro-
cedures performed from SCH. We randomly divided the 
raw video dataset by eye-level into training (for updating 
model parameters), validation (for hyperparameter tun-
ing and model selection), and testing dataset (for assess-
ing model performance) at a 6:2:2 ratio. The flowchart of 
the current study was showed in Fig. 1.

Video processing and development of the DL algorithms
To analyze surgical video, we initially captured frames 
using OpenCV (Open Source Computer Vision Library. 
2015). As videos consist of numerous sequential frames, 
a single surgical clip may contain thousands of frames 
that demand expensive hardware. To address this issue, 
we downsampled the surgical clips to 100 frames using 
an average method. To enhance our dataset, we per-
formed data augmentation techniques including random 
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Fig. 1  Flowchart of the Current Study and Hybrid DL Algorithm Diagrams. (A): a Convolutional Neural Network (CNN) and a Transformer module (RNN-
based model) (B): a Convolutional Neural Network (CNN) and a Recurrent Neural Network (RNN) consisting of Gated Recurrent Unit (GRU) layers (RNN-
based model)
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cropping and adjustments to saturation, brightness, and 
contrast.

We evaluated two hybrid DL algorithms (Fig.  1). The 
first DL algorithm has a CNN and a RNN architecture. To 
learn spatiotemporal surgical features for the entire step, 
we use a pre-trained network (DenseNet model) [21] to 
extract features from the video frames. The DenseNet 
model is a CNN model, which is a type of DL algorithm 
that processes images, and is frequently used for diseases 
classification tasks. We then concatenated these features 
to train multilayer RNN networks, learning spatiotempo-
ral patterns that discriminate across steps (Fig. 1B). RNN 
is another type of DL algorithm that process data that 
comes in a sequence, such as words, sentences, audio, or 
video [22]. The RNN can learn from the whole sequence 
of data, not just from individual pieces. For compiling 
the RNN-based model, we use an Adam optimizer and a 
minibatch gradient descent of size 32.

The second algorithm we evaluated was a Transformer-
based model [23]. Transformer have recently emerged as 
state-of-the-art DL architectures as described previously 
by various research groups [24]. Briefly, Transformer 
architectures are based on a self-attention mechanism 
that learns the relationships between elements of a 
sequence. As visual data follows a typical structure (e.g., 
spatial and temporal coherence), Transformer mod-
els and their variants have been successfully used for 
image recognition [25], object detection [26], and video 
understanding [27, 28]. Similar to the above RNN-based 
model, we also adopted a pre-trained DenseNet network 
for feature extraction. Since videos are ordered sequences 
of frames, we embed the positions of the frames pres-
ent inside videos with an Embedding layer (positional 
encoding) and added these positional embeddings to the 
precomputed DenseNet feature maps (Fig. 1A). We then 
applied Transformer with multi-heads networks (number 
of heads = 6) for video classification. For compiling the 
Transformer-based model, we use an Adam optimizer 
(an initial learning rate of 0.001, beta 1 of 0.9, beta 2 of 
0.999) and a minibatch gradient descent of size 32. Early 
stopping was applied when the validation loss did not 
decrease for ten epochs.

Experimental setup
We implement the two DL algorithms with the Ten-
sorflow framework (Google, TensorFlow-metal Plug-
gableDevice, version 2.6.0, MacOSX-arm64) and Keras 
API (version 2.6.0). Our hardware included a MacBook 
Air (macOS Monterey 12.0.1 operation system) with an 
Apple M1 chip (7-core GPU and 16-core Neural Engine) 
and a 16GB RAM system.

Statistical analysis
According to the Standards for Reporting of Diagnostic 
Accuracy Studies (STARD) [29], we evaluated the per-
formance of DL algorithms to classify strabismus surgery 
steps using the following metrics: accuracy, precision, 
recall and F1-score with a 2-sided 95% confidence inter-
val (CI). Their formulas for calculation are as follows:

	
Accuracy =

True Positive+ TrueNegative

All
� (1)

	
Precision =

True Positive

TruePositive+ False Positive
� (2)

	
Recall =

True Positive

True Positive+ FalseNegative
� (3)

	
F1− score =

2 ∗ Precision ∗ Recall

Precision+ Recall
� (4)

We used the area under the receiver operating character-
istic (ROC) curve (AUC) to describe the ability of each 
DL algorithm to discriminate steps of strabismus surgery. 
For multiclass classification of surgical steps, we used one 
vs. all technique [30] to estimate steps-specific metrics 
and their 95% CIs.

We calculate the 95% confidence intervals (CIs) for 
our model’s performance metrics using the Wilson score 
interval method. These confidence intervals furnish a 
statistical measure of certainty regarding the estimates 
of model performance. Specifically, a narrow confidence 
interval denotes high confidence in the performance esti-
mate, while a wider interval indicates greater uncertainty. 
The calculation of the Wilson score interval is as follows:

	
CI= p̂± z ∗ sqrt((p̂(1− p̂)/n) + (z2/(4n2)))

p̂ = (1/(1 + z2/n)) ∗ (P+ z2/(2n))

Where p ̂ represents the model’s performance metrics, z 
is the z-score corresponding to the standard normal dis-
tribution (for a 95% confidence interval, z = 1.96)), and n 
denotes the sample size [31].

All statistical analyses were carried out using Python’s 
statistical programming language (ver. 3.8.1, Python 
Software Foundation, Beaverton, US) and sklearn library 
(ver.1.0.2) [32].

Results
Of the total 496 strabismus surgical videos, 19 (3.8%) 
were excluded due to poor video quality or off-center of 
the surgical area, leaving the total dataset with 479 videos 
from 249 patients. Among the participants who under-
went strabismus surgery, the average age was 6.23 ± 2.91 
years, and 121 of them (48.59%) were female.
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Supplementary Table 1 illustrates the number of video 
clips of each step in our dataset. There were 2,013, 660 
and 672 video clips of surgical steps in the training, 
validation and testing dataset. Data augmentation fur-
ther enriched the sample size of the training dataset to 
10,065. After training for 100 epochs (the model showed 
no improvement in both accuracy and cross-entropy 
loss, Supplementary Fig.  1), DL models for identifying 
the steps in video clips of strabismus surgery achieved 
macro-average AUC of 1.00 (95% CI 1.00–1.00) with 

Transformer-based model and 0.98 (95% CI 0.97-1.00) 
with RNN-based model, respectively (Table  1; Fig.  2). 
Transformer-based model yielded a higher accuracy 
compared with RNN-based models (0.96 vs. 0.83, 
p < 0.001).

Table  2 demonstrated step-level metrics, including 
accuracy, sensitivity, specificity, and precision of two DL 
algorithms across steps. In detecting different steps of 
strabismus surgery, the predictive ability of the Trans-
former-based model was better than that of the RNN-
based model (Fig. 3). Precision ranged between 0.90 and 
1 for the Transformer-based model and 0.75 to 0.94 for 
the RNN-based model. The f1-score ranged between 0.93 
and 1 for the Transformer-based model and 0.78 to 0.92 
for the RNN-based model.

Table 1  Summary metrics of algorithm performance for surgical 
steps classification in validation dataset
Metrics Transformer-based 

model
CNN-RNN-
based model

Accuracy (95% CI) 0.96 (0.94 to 0.98) 0.83 (0.79 to 0.87)
Macro-AUC (95%CI) 1.00 (1.00 to 1.00) 0.98 (0.97 to 1.00)

Table 2  Accuracy, sensitivity, specificity, and precision for algorithms across different steps of strabismus surgery
Algorithm and 
Metrics

Conjunctival 
closure

Disinsertion 
of muscle

Exposure of rectus 
muscle

Hooking 
muscle

Conjunctival 
incision

Placement 
of suture

Reattachment 
of muscle

Use 
of 
cal-
iper

Transformer-based model
  Accuracy 1 1 0.91 (0.88 to 0.94) 0.97 1 0.95 0.89 0.96
  Precision 1 0.93 0.97 0.95 1 0.9 0.98 0.96
  Recall 1 1 0.91 0.97 1 0.95 0.89 0.96
  F1-score 1 0.97 0.94 0.96 1 0.93 0.93 0.96
CNN-RNN-based model
  Accuracy 0.89 0.84 0.85 0.83 0.92 0.78 0.84 0.73
  Precision 0.85 0.86 0.78 0.94 0.92 0.79 0.75 0.82
  Recall 0.89 0.84 0.85 0.83 0.92 0.78 0.84 0.73
  F1-score 0.87 0.85 0.82 0.88 0.92 0.78 0.79 0.78

Fig. 2  Performance of two DL model in detection of surgical steps in the testing set. (A) ROC curve for detecting different steps of strabismus surgery 
with the Transformer-based model. (B) ROC curve for detecting different steps of strabismus surgery with the RNN-based model
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Discussion
In this study, we investigated the performance of the 
DL algorithms in identifying steps of strabismus sur-
gery from video clips. Our results revealed that the 
Transformer-based model achieved robust performance 
(AUC = 1.00; and accuracy = 96%) in classifying different 
surgical steps. To the best of our knowledge, no other DL 
system has been developed for recognizing the steps in 
ophthalmic operation other than cataract surgery. There-
fore, we believe that our method provides a unique tool 
for objective, step-specific assessments of strabismus 
surgery.

Our study differs from previous cataract surgery stud-
ies in several key aspects. First, previous studies primar-
ily relied on CV or machine learning techniques to model 
instrument labels [33–35], either alone or in combination 
with video images. In contrast, we adopted a hybrid DL 
architecture that leveraged Transformer-based mod-
els for video classification, building upon our previous 
work. This approach eliminates the need for instrument 
segmentation and reduces misalignment and misclassi-
fication errors. As limited studies have focused on stra-
bismus surgery, we cannot directly compare our result 
with state of the art in this field. However, we recently 
proposed similarly Transformer-based models for cata-
ract phase recognition, which outperforms several strong 
baselines in surgical phase recognition [36].

Not surprisingly, the Transformer-based model exhib-
its superior predictive performance compared to the 
RNN-based model in the current study. RNNs are algo-
rithms for processing sequential data such as natural lan-
guages, sound, and time-series data [37]. However, RNNs 
suffer from gradient explosion/vanishing [38], which 
makes it challenging to process over long sequences. On 

the other hand, Transformers are new neural network 
architectures unveiled by Google AI in 2017 [23]. Uti-
lizing the self-attention mechanism, Transformer-based 
models capitalize on parallel processing, making the 
training faster and building a better model in less time. 
Transformers have outperformed both CNNs and RNNs 
across a wide range of research areas [39–41]. Our results 
also confirm that the Transformer-based model demon-
strates excellent performance in handling long sequences 
data. These findings confirm our hypothesis that Trans-
formers are optimal choice for analyzing ophthalmic sur-
gical sequences.

Our study holds the potential in many clinical settings. 
Ophthalmic surgery, such as strabismus surgery, learn-
ing curves for residents are closely tied to feedback-based 
teaching guidance. A DL algorithm could potentially 
mitigate surgical errors and guide surgeons, particularly 
novices, by providing real-time reminders of the next 
step and warnings for incorrect actions during surgery. 
It is also possible to develop a real-time supervion and 
objective surgical evaluation system to improve strabis-
mus surgical outcomes. Wong, et al., recently reported a 
CNN-based system named DeepSurgery for the evalu-
ation and supervision of cataract surgical procedures 
[42]. Furthermore, as AI technology advances, intelli-
gent robots equipped with DL algorithms could become 
invaluable assistants in improving surgical precision and 
safety. In our previous work, we developed a novel phase-
specific augmented reality (AR) [36] guidance system 
that provides ophthalmologists with customized visual 
cues based on the recognized surgical phase. This DL 
algorithm holds the potential to accelerate the develop-
ment of such intelligent surgical robots, ultimately paving 
the way for precision medicine in ophthalmology.

Fig. 3  Confusion matrices of two DL model in detection of surgical steps in the testing set. (A)Confusion matrix for detecting different steps of strabismus 
surgery with the Transformer-based model. (B)Confusion matrix for detecting different steps of strabismus surgery with the RNN-based model
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There are several limitations to this study. First, our 
datasets were collected from a single center. There was 
no external validation dataset to confirm the perfor-
mance of DL models. Diverse multicenter surgical videos 
are needed to validate the generalization of our DL model 
in future studies. Second, we used the dataset with mul-
tiple records per surgeon. Further study involving inde-
pendent datasets with surgeries by different surgeons 
and clinical contexts is necessary to verify the classifica-
tion error. Third, we did not include complicated cases 
or surgery with complications in this pilot study. There-
fore, further study is required to assess the generalizabil-
ity of DL algorithm in complex strabismus surgery cases. 
Finally, our DL model is developed based on video clips 
manually labeled and pre-segmented. The real-life appli-
cations will require algorithms to detect segment bound-
aries and assign steps’ labels.

Conclusion
We demonstrate that DL models can automatically iden-
tify strabismus surgery steps with high accuracy based 
on surgical videos. Furthermore, Transformer algorithms 
show excellent performance when modeling spatiotem-
poral features of video frames. Further studies to deter-
mine the generalizability of the DL model in real life and 
its usefulness and potential application in surgical educa-
tion seem to be warranted.
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