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Abstract

Background Dry eye is a chronic and multifactorial ocular surface disease caused by tear film instability or imbalance
in the microenvironment of the ocular surface. It can lead to various discomforts such as inflammation of the

ocular surface and visual issues. However, the mechanism of dry eye is not clear, which results in dry eye being only
relieved but not cured in clinical practice. Finding multiple environmental pathways for dry eye and exploring the
pathogenesis of dry eye have become the focus of research. Studies have found that changes in microbiota may be
related to the occurrence and development of dry eye disease.

Methods Entered the keywords “Dry eye’, “Microbiota’, “Bacteria” through PUBMED, summarised the articles that meet
the inclusion criteria and then filtered them while the publication time range of the literature was defined in the past
5 years, with a deadline of 2023.A total of 13 clinical and 1 animal-related research articles were screened out and
included in the summary.

Results Study found that different components of bacteria can induce ocular immune responses through different
receptors present on the ocular surface, thereby leading to an imbalance in the ocular surface microenvironment.
Changes in the ocular surface microbiota and gut microbiota were also found when dry eye syndrome occurs,
including changes in diversity, an increase in pro-inflammatory bacteria, and a decrease in short-chain fatty acid-
related bacterial genera that produce anti-inflammatory effects. Fecal microbiota transplantation or probiotic
intervention can alleviate signs of inflammation on the ocular surface of dry eye animal models.

Conclusions By summarizing the changes in the ocular surface and intestinal microbiota when dry eye occurs, it

is speculated and concluded that the intestine may affect the occurrence of eye diseases such as dry eye through
several pathways and mechanisms, such as the occurrence of abnormal immune responses, microbiota metabolites-
intervention of short-chain fatty acids, imbalance of pro-inflammatory and anti-inflammatory factors, and release of
neurotransmitters, etc. Analyzing the correlation between the intestinal tract and the eyes from the perspective of
microbiota can provide a theoretical basis and a new idea for relieving dry eyes in multiple ways in the future.
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Background

Dry eye is a chronic ocular surface disease caused by tear
film instability or imbalances in the ocular surface micro-
environment and resulted in a range of discomfort symp-
toms and visual problems. While the exact causes and
mechanisms are not fully understood, leading to the situ-
ation can only be managed but not cured. The microbiota
with many residing on the skin and mucosal surfaces of
the host body in a symbiotic relationship. In recent years,
research has shown a significant link between micro-
biota and disease development, making the exploration
of this relationship a key area of focus [1]. The unique
structure of the ocular surface, constantly exposed to
the external environment, results in the development of
a stable symbiotic microbiota that plays a crucial role in
maintaining the immune balance of the ocular surface.
Disrupting microenvironment can lead to various ocu-
lar diseases. The gut, extensively studied as a key muco-
sal site for understanding the human microbiome by the
National Institutes of Health (NIH) in the United States,
harbors approximately 150 times more microbial genes
than human genes [2]. Recent studies demonstrated that
changes in gut microbiota can impact the onset of ocu-
lar diseases. Investigating the correlation between the
microbiome and ocular diseases has emerged as a start-
ing point for examining disease pathways and prevent-
ing disease progression. This review aims to delve into
the potential mechanisms of the gut-eye axis by analyz-
ing the impact of microbiota on ocular surface immunity
and outlining the alterations in the ocular surface and
gut microbiota in cases of dry eye, seeking to offer novel
insights for the treatment and management of clinical
dry eye through a multi-faceted approach.

Methods

During the search and screening process, the keyword
“dry eye” was entered using PubMed. In order to ensure
the innovation and timeliness of the article, while screen-
ing the literature based on the keywords, the publica-
tion time range of the literature was defined in the past
5 years, with a deadline of 2023. In September 2019, a
total of 4,701 search terms were obtained. After entering
the keyword “Microbiota” at the same time, 37 searches
were obtained; after entering the keyword “Bacteria’,
221 searches were obtained. Keywords are not separated
using Boolean operators in this process. The correspond-
ing references were reviewed at the same time as inclu-
sion, and screened out 2 articles that met the inclusion
criteria (Document 63 and Document 64).

The search results that simultaneously satisfied “Dry
eye""Microbiota” and “Dry eye” “Bacteria” were extracted,
review articles and research articles using animals as
experimental subjects were excluded.A total of 13 articles
were screened out, among which dry eye and there are 9
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studies on ocular surface microbiota and 4 studies on dry
eye and gut microbiota. At the same time of inclusion,
taking into account the new concept of fecal microbiota
transplantation and further verifying the relationship
between the gut and the ocular surface, the team also
included an animal-related study based on “fecal micro-
biota transplantation” in 2016. This work was completed
by the cooperation of six members.

Results

Characterisation of the ocular surface microbiota

The ocular surface, composed of the cornea and conjunc-
tiva, exhibits fewer microbial gene sequences compared
to intestinal mucosa. Low abundance sequences from
external sources and pollutants can be considered part of
the ocular surface commensal microbiota, have resulted
in varied findings in research. Despite advancements in
research methods from traditional culture to second-
generation sequencing-based assays, there remains no
consensus regarding the existence of a core microbial
composition on the ocular surface.

Research on microorganisms present on the ocular sur-
face can be traced back to the 1930s. The most frequently
identified microorganisms in the conjunctiva of healthy
individuals include coagulase-negative staphylococci,
Propionibacterium spp, Corynebacterium spp, Staphylo-
coccus aureus, Streptococcus, as well as Gram-negative
bacteria like Haemophilus species, Neisseria species,
and Pseudomonas species [3, 4]. With the stability of the
genetic code confirmed, sequencing the 16 S ribosomal
ribonucleic acid gene (16 S rRNA) has emerged as an
improved method for analyzing microbial composition
in habitats. These habitats typically consist of five main
phyla: Proteobacteria, Actinobacteria, Firmicutes, Cyano-
bacteria, and Bacteroidetes. The first three phyla make up
more than 87% of the total composition, while Cyanobac-
teria and Bacteroidetes were identified as contaminants.
In addition to 59 genera, the presence of Bradyrhizobium,
Acinetobacter, Brevundimonas, Aquabacterium, and
Sphingomonas was noted, along with genera commonly
found in culture methods [5]. In addition to differences in
species, there were variations in abundance between the
two methods. The dominant bacteria identified through
the traditional culture method constituted a significantly
lower percentage of the sequencing results. For instance,
Staphylococcus, which was more prevalent in the former
method, accounted for only 4% of the total. This discrep-
ancy could be attributed to the bias of the traditional cul-
ture method towards genera that are suitable for growth
in the medium. In contrast, the 16 S sequencing method
revealed a much more diverse microbial species compo-
sition, making it more suitable for analyzing dominant
species in the environment. This study had a limited
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number of subjects for analysis, and a larger sample size
would be necessary to validate the findings.

Sampling effort plays a crucial role in the detection of
environmentally relevant genera on the ocular surface.
Light pressure wiping has been shown to detect gen-
era such as Rothia, Herbaspirillum, Leptothrichia, and
Rhizobium, while reducing the detection of Firmicutes
(Staphylococci), Actinobacteria (Corynebacterium spp.),
and Proteobacteria. On the other hand, strong pressure
wiping results in a higher abundance of Proteobacteria,
Bradyrhizobium, Delftia, and Sphingomonas on the con-
junctival epithelium [5]. Deep pressure is recommended
over scraping when studying ocular surface microor-
ganisms, as the microbial fraction easily washed away
by mucus. Wen et al [6] discovered that older individu-
als had higher levels of Shannon’s index and increased
abundance of Staphylococcus haemolyticus, Micrococcus
luteush, and E. coli, while younger individuals had more
Ochrobactrum anthropi, Mycoplasma hyorhinis, and
P acnes. Additionally, the elderly group showed higher
abundance of conjunctival microbial metabolic path-
ways related to carbohydrates, fats, nutrients, and amino
acids compared to the young group, suggesting that age
may have a stronger impact on microbial composition
than sex.In a recent study on diabetic dry eye in chil-
dren and adolescents, similar results to previous findings
were observed [5, 7]. The phylum levels of ocular surface
microorganisms in normal children and adolescents were
mainly composed of Proteobacteria, Firmicutes, and Acti-
nobacteria. However, variations in abundance could indi-
cate a potential correlation with factors such as age and
immune status.

Research on the microbiological characterization of the
ocular surface has shown a growing trend over the past
decade. The results of a comprehensive study indicate
that the main phyla present on the ocular surface include
Proteobacteria, Actinobacteria, Firmicutes, and Bacte-
roidetes. Sampling technique, environment, age, and
gender have been found to influence the microbiological
composition of the ocular surface. The definition of the
core microbiota remains inconclusive. Despite the vari-
ous influencing factors, they do not seem to disrupt the
normal status of the ocular surface, suggesting the pres-
ence of a unique immune system that provides a response
to external pathogens while also developing tolerance to
commensal microorganisms. Further exploration of the
relationship between ocular surface microorganisms and
immunity may offer insights into their role in the devel-
opment of ocular surface diseases.

Microbiota and ocularimmune tolerance

The homeostasis in ocular surface microenvironment is
primarily accomplished through mechanical eye move-
ments and the activation of local immunity. Blinking and
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tear flushing aid in the removal of foreign bodies from
the ocular surface.Apart from the actions, the ocular
surface houses a natural immune system that regulates
host immunity in response to microorganisms. This reg-
ulation involves the corneal epithelium, maintenance of
corneal avascularity, and interaction with conjunctiva-
associated lymphoid tissues and resident immune cells
such as secretory IgA (sIgA) and lymphocytes.

The primary antibody produced by Goblet cells in the
lacrimal and conjunctival glands is sIgA, which is gen-
erated by B cells. These B cells are initially prompted by
primitive B cells that travel from the bone marrow to
the conjunctiva or lacrimal glands after undergoing class
switching. sIgA plays a crucial role in preventing patho-
genic bacterial infections by aggregating in the mucin
layer, binding to mucin, and also promoting the anti-
inflammatory cytokine IL-10, which influences the matu-
ration of dendritic cells [8]. This process ultimately leads
to the induction of immune tolerance in the mucous
membranes. In research studies, it was observed that
ocular surface sIgA levels decreased in conventionally
reared mice following oral administration of antibiotics
[9]. Conversely, levels of IgA-producing B cells showed a
significant increase in germ-free rats after transitioning
them to a conventional rearing environment [10]. Addi-
tionally, a positive relationship was identified between
the diversity of intestinal microbiota and sIgA levels [11].
While there is no direct evidence linking this change to
the ocular surface microbiota, it is conceivable that this
change could be influenced by alterations in the ocu-
lar surface environment or other parts of the host, like
the gut. Further research is needed to confirm whether
the ocular surface microbiota plays a role in stimulating
and transforming B cells. The mechanism by which the
microbiota initiates this response remains unclear. Stud-
ies have shown that when MyD88 and TRIF are knocked
out from the Toll-like receptor activation pathway in the
gut, mice experience reduced IgA production [8]. On the
other hand, Toll-like receptor stimulation leads to B-cell
activating factor promoting IgA class switching through
a T-cell-independent pathway, ultimately stimulating IgA
production. It is more probable that this antibody pro-
duction is initiated by recruitment from other mucosal
sites, such as the gut, rather than originating from the
lacrimal gland.

Various receptors on the ocular surface can respond
to different signals that trigger inflammatory pathways.
Pathogen-associated molecular pattern receptors located
in the ocular epithelium are activated by specific stimuli,
initiating innate and specific immune responses through
the production of cytokines, chemokine ligands, and the
activation of inflammatory pathways like nuclear factor-
kB and mitogen-activated protein kinases [4, 12]. TLR4
activation by lipopolysaccharide (LPS) can induce dry eye
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development by increasing cytokine release in the cornea
and conjunctiva [13]. Studies in animal models demon-
strated that LPS up-regulates the expression of IL-12a,
IL-1B, and IFN-y in dry eye [13], as well as increasing
the production of chemokines associated with Th1 cells,
ultimately leading to Thl-related dry eye development.
TLR5, found in the conjunctival epithelium, recognizes
flagellin proteins from pathogenic bacteria and responds
to them [14]. Pathogenic bacteria trigger a response by
activating receptors on the ocular surface, while com-
mensal bacteria contribute to mucosal protection by
competing with pathogenic bacteria. In vitro studies
show that healthy corneal and conjunctival cells do not
mount an immune response to ocular surface commen-
sal bacteria like Staphylococcus epidermidis or Propioni-
bacterium acnes. Instead, they secrete cytokines like IL-6
and IL-8 in response to pathogens such as Pseudomonas
aeruginosa [15]. Mice colonised with Corynebacterium
mastitidis enhance ocular surface immune responses
against Pseudomonas aeruginosa and Candida albicans
infections by inducing ocular surface T cells to produce
IL-17 [16]. While the exact role of Toll-like receptors
(TLR) in the immunopathogenesis of dry eye remains
to be fully elucidated, it is plausible to suggest that dis-
turbances in microbiota balance and activation of TLR
signaling can trigger immune responses linked to the
development of dry eye.

Dry eye - ocular surface homeostasis imbalance

The healthy ocular surface plays a crucial role in main-
taining the eye’s stability. The cornea, lacking blood
vessels and lymphatic vessels, is considered an immune-
privileged area, limiting the access of immune cells. This
helps prevent excessive immune responses on the ocular
surface. The balance of angiogenic and anti-angiogenic
factors in the corneal epithelium is key to this defense
mechanism. Studies have shown that immature antigen-
presenting cells at the corneal limbus promote T-lym-
phocyte tolerance. Anti-inflammatory factors like TGE-f,
VIP, and IL-Ra can counteract inflammatory responses
by inhibiting the activation of antigen-presenting cells
when the ocular surface is compromised.Cells and fac-
tors such as regulatory T cells (Treg) and programmed
death ligands are expressed on the ocular surface to regu-
late inflammation and maintain homeostasis. In dry eye
conditions, activation of the innate and adaptive immune
systems leads to increased infiltration of effector T cells,
causing inflammation. NK cells play a crucial role in the
early stages of dry eye development by responding rap-
idly to dryness stress [17], secreting IFN-y, promoting
APC cell maturation, and inducing pathogenic Th17 cell
polarization [18], ultimately exacerbating dry eye symp-
toms. Ocular surface NK cells showed significant correla-
tions with OSDI scores, TBUT, and Schirmer’s test in dry
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eye patients [19]. However, their percentage remained
unaltered, consistent with previous research that found
no significant increase in NK cells in the conjunctiva [20].
This discrepancy could potentially be attributed to varia-
tions in NK cell status between humans and animals, as
well as differing disease states as contributing factors.
Elevated levels of pro-inflammatory factors such as
IL-1, IL-6, IFN-y, and IL-17 have been observed in clini-
cal and animal models of dry eye [18, 21-23]. IL-1 plays
a role in stimulating the secretion of chemokines, IL-6,
and IL-8 by human corneal epithelial cells [21], as well
as inducing the expression of antimicrobial peptides by
epithelial cells in the cornea and conjunctiva to bolster
ocular surface protection. Correlations have been found
between IL-1 levels and corneal fluorescein staining [24].
Additionally, IL-1, in conjunction with TNEF-q, facilitates
the up-regulation of inter-cellular adhesion molecule on
ocular surface epithelium, as well as the expression of
co-stimulatory factors (CD80/86), chemokine receptor 7,
and MHC-II. This leads to chemotactic leukocyte recruit-
ment and the initiation of early phases of inflammation in
the disease.IL-6 concentration in tears showed significant
correlations with the severity of ocular surface epithelial
lesions, tear film rupture time, Schirmer’s test, tear clear-
ance, keratoepithelioplasty score, and cupped cell density
[22]. Additionally, IL-6 was found to inhibit the differen-
tiation of Foxp3+Treg cells, which, in conjunction with
TGE-B, promotes the expression of Th17 cell-associated
transcription factors linked to various ocular diseases
[25]. Research has shown that IFN-y-associated Th1 cells
and IL-17-associated Th17 cells are distinct cell subpop-
ulations present in the draining lymph nodes of mice in
the dry eye model. IL-17 plays a crucial role in disrupt-
ing the corneal barrier and is considered a key factor in
the progression of dry eye [23]. When mice are subjected
to experimental drying stress on the ocular surface, there
is an increase in the number of CD4+T cells in the con-
junctival epithelium, along with elevated levels of IL-17 in
the cornea, conjunctiva, and tears [23]. IL-17 plays a criti-
cal role in promoting inflammation and corneal epithelial
barrier dysfunction by upregulating ICAM-1 expression
and activating matrix metalloproteinase-9 [23]. Block-
ing IL-17 has been shown to reduce disease severity and
restore Treg function [26]. Additionally, IL-17 contrib-
utes to corneal lymphangiogenesis via the VEGFD/C-
VEGEFR3 signaling pathway, facilitating immune cell
transport to the ocular surface and worsening dry eye
inflammation. Chemokines such as CCR5 and CXCR3
produced by Thl cell stimulation recruit more lympho-
cytes to the ocular surface epithelium of dry-eyed mice,
leading to a Thl-type inflammatory response. Increased
expression of CCL20 also plays a role in the aggrega-
tion of Th17+cells and the influx of corneal IL-17+cells
involved in Th17 cell homing [23]. Fractalkine/CX3CL1,
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a potent chemoattractant for CX3CR1+leukocytes found
in normal human tear fluid, is involved in leukocyte acti-
vation, transport, and adhesion. In the mouse model of
desiccation syndrome, Fractalkine is a key molecule in
inducing monocyte infiltration and inflammation [27].

A role for CD4+T cells in dry eyes has been dem-
onstrated, with clinical and animal models showing
increased Th1 and Th17 cells and decreased Treg cells in
T cell subsets. Clinical cases of dry eye have also shown
increased expression of the IL-23/Thl7 axis, leading
to higher levels of IL-6, IL-23R, TGF-B2, and the tran-
scription factor RoRyt [23]. In animal models, excessive
transfer of CD4+T cells in dry eye mice exacerbates
symptoms in Treg-deficient mice, confirming the sup-
pressive role of Treg cells in dry eye conditions. The
dysregulation of Treg cells is linked to various immune
disorders, with Th17 exerting an opposing effect on Treg
function. Restoring Treg function by blocking IL-17 sig-
nificantly reduces disease severity [26]. These findings
indicate that effector T cells may adapt to dry eye pro-
gression by differentiating into specific subpopulations to
preserve cellular balance.

Conjunctiva-associated lymphoid tissue and tear drain-
age-associated lymphoid tissue, along with the lacrimal
gland [28], contain abundant plasma cells that produce
sIgA)to defend the ocular mucosa against external patho-
gens. In an experimental model of dry eye, blocking the
pathogenic IL-17 associated with dry eye led to reduced
formation of germinal centers and decreased transfer of
pathogenic B cells [29]. While there is limited research
on the role of B cells in dry eye, further studies using ani-
mal and clinical models are needed to clarify their mech-
anisms of action in this condition.

Dry eye and ocular surface microbiota

The inflammatory nature of dry eye is linked to changes
in microbiomics, emphasizing the importance of altered
ocular surface microbiota in dry eye development.
Recent clinical studies have outlined the variations in
ocular surface microbiota in dry eye states, highlighting
both similarities and differences compared to normal
subjects(Table 1). Some studies have reported a decrease
in alpha diversity of ocular surface microbiota in dry
eyes [30-32], while others have found no change [33],
potentially related to the underlying causes of dry eyes.
Meibomian Gland Dysfunction dry eye (MGD) shows
no difference in diversity compared to normal eyes or
other types of dry eye [32, 33],whereas in the abundance
in meibomian gland secretions is lower than healthy
[34], which suggests that fewer disease-related microbial
species in MGD patients may be more expressed inside
the glands. At the same time, it was also found that the
study by Dong [33] believed that the diversity of meibo-
mian gland dysfunction dry eye did not change with the
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severity of the disease, but the study by Jiang [35] found
that the detection rate and number of bacterial species
in the severe MGD group were both significantly higher
than the control group, mild and moderate MGD groups
[35]. Another cause of dry eye-Aqueous tear deficiency
(ATD) is associated with reduced alpha diversity [31].
Dry eye patients with diabetes exhibit increased diversity
[7, 36]. The heightened alpha diversity suggests a state of
resistance to inflammation on the ocular surface. In con-
trast, studies on [} diversity consistently show differences
between dry eye patients and normal subjects [7, 31, 32,
36].

Li et al. [32] found that the dominant ocular surface
bacteria in dry eye, Corynebacterium and Staphlococci
epidermidis, were altered to include Pseudomonas, Aci-
netobacter, Bacillus, Chryseobacterium, and Corynebac-
terium, potentially impacting ocular surface immunity
and IgA production. Dry eyes are typically categorized
as lipid-abnormal or aqueous-deficient based on tear
composition. Bacilli abundance, associated with uve-
itis and ocular surface infections, was higher in lipid-
abnormal dry eyes like MGD [38]. Staphylococcus and
Sphingomonas were identified as signature genera of
MGD, with enrichment of Acinetobacter sp. WCHA4S,
Deinococcus sp. NW-56, and Staphylococcus aureus [31].
Corynebacterium was more prevalent in mild MGD [33].
Sphingomonas has been linked to endophthalmitis devel-
opment [39], while Staphylococcus has been linked to
post-cataract surgery complications like bacterial kerati-
tis, conjunctivitis, and endophthalmitis. This association
may be attributed to the notably higher lipase content
of Staphylococcus found on the ocular surface. This high
lipase content can potentially impact the lipid layer com-
position in individuals with MGD, worsening tear film
instability and inflammation on the ocular surface [40].
Corynebacterium stimulates T cells to produce IL-17,
which serves a protective function [16]. A decrease in
Corynebacterium levels has been linked to the onset of
fungal keratitis [29]. The continuous cycle of bacterial-
induced blepharitis further supports the worsening of dry
eye inflammation over time. However, it is important to
note that in this study, the sampling site included the eye-
lids categorized as skin, raising questions about whether
the high prevalence of Staphylococci can be solely attrib-
uted to the microbiota of the ocular surface conjunctiva.
Interestingly another finding was obtained in the meibo-
mian gland secretions (meibum) of MGD. The abundance
of Campylobacter coli, Campylobacter jejuni and Entero-
coccus faecium was significantly increased in meibum,
while it was almost not detected in healthy controls [34].
This special microbiota also exhibited a significant rela-
tionship with carbohydrate metabolism, fatty acid elon-
gation, biosynthesis, and degradation. Changes in gene
expression levels related to, glyceride metabolism and
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other related gene expression levels can enable immune
evasion through the Type IV secretion system [34]. There
are not many analyzes of meibomian glands, and some
studies believe that the identification results of meibo-
mian gland secretions may be affected by the deep and
superficial layers, and as the disease deepens, its compo-
sition becomes increasingly complex [35], which further
illustrates the disease is responsible for the etiology of
MGD. By identifying the unique functions and metabolic
pathways of the microbial community in MGD patients,
it can provide another way to explore the pathogenesis of
MGD, and also provide a potential target for the devel-
opment of new treatment strategies.Various studies have
reported different findings regarding anterior blepharitis
associated with ATD. Liang et al. [31] identified elevated
levels of Janibacter melonis in anterior blepharitis, while
another study found Enhydrobacter and Brevibacterium
to be marker genera of the condition [30]. Given that
the subgroup of patients with anterior blepharitis in this
study included individuals with graft-versus-host disease,
it is postulated that the presence of this immune disorder
may influence the identification of dry eye markers, war-
ranting further validation. Dry eye with systemic factors
is characterized by involvement of multiple ocular sites,
greater damage to ocular surface cells, and challenges in
treatment. Moreover, compared to simple dry eye, ocu-
lar surfaces of individuals with autoimmune diseases
exhibit higher levels of Corynebacterium, Staphylococcus,
and Prevotella, along with decreased levels of Pelomonas
and Herbaspirillum [37]. The unique characteristics of
Corynebacterium cell wall can impact macrophage func-
tion. In the study, correlations were identified between
Herbaspirillum and Pelomonas with blepharoplakia loss
score, time to first tear film break-up (FTBUT), and lipid
layer score. Furthermore, the combination of Coryne-
bacterium and Pelomonas is believed to be able to dif-
ferentiate markers of immune dry eye from simple dry
eye. The development of immune dry eye is also associ-
ated with increased expression of signaling pathways
related to cell growth and apoptosis. Dry eye patients
with diabetes mellitus exhibit a reduction in ocular sur-
face antimicrobial substances, leading to greater diver-
sity and abundance of their ocular surface microbiota
[36]. Diabetic patients may experience corneal nerve
damage, resulting in increased tear film instability and
decreased TBUT [36]. A study [7]conducted in Shanghai
focused on characterizing the ocular surface microbiota
of diabetic dry eyes in children and adolescents. The
study identified core genera such as Pseudomonas, Pae-
nibacillus, Lactococcus, Bacteroidetes, Acinetobacter, and
Rhodococcus, along with a high abundance of Staphylo-
coccus and Staphylococcus aureus.Staphylococcus aureus
could impact lipid secretion from the lid glands, con-
tributing to tear film instability. This indicates that the

2. Corynebacterium macginleyi was only detected in the severe

conjunctival sac (CS), the bacterial composition of MG is more
MGD group, with a detection rate as high as 26.3%.

tions of MGD patients was significantly higher than that in the
complex than that of CS;

1. The detection rate of bacteria in Meibomian gland secre-

Main point

Reduce

Corynebacterium

macginleyi
Staphylococcus

Meibomian gland

secretions:
MGD(Severe)>

Comparison Diversity changes Increase
Control

group
MGD
vs.Control

Moderate/Severe

MGD: Mild/
Control

Groups

Subjects
Human

Table 1 (continued)
Author/Date
Xiaodan Jiang

[35]
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pathogenesis of diabetic dry eye may share similarities
with severe MGD [33]. Lactococcus, commonly utilized
as a probiotic, was found to be more prevalent in children
with diabetic dry eyes, potentially linked to its role in
regulating NF-KB and STAT-3 signalling pathways [41].
The variations in properties displayed by the ocular sur-
face microbiota in dry eyes highlight the intricate nature
of this condition, emphasizing the necessity for a thor-
ough and multifaceted investigation into the connection
between ocular surface microbiota and dry eyes.

Dry eye and gut microbiota
The interaction between the gut microbiome and the
immune system is crucial for maintaining intestinal
balance and preventing disease. Commensal microor-
ganisms in the gut help protect the host by inhibiting
pathogen growth, breaking down indigestible polysac-
charides to produce short-chain fatty acids (SCFAs) like
butyric acid [42], which have strong immunomodulatory
effects. These SCFAs also enhance the intestinal mucosal
barrier, defending against pathogens and exhibiting anti-
inflammatory properties. Disturbance in the balance of
symbiotic bacterial composition can lead to a variety of
immune diseases. LPS in the gut trigger local inflamma-
tion, allowing immune cells to travel to distant areas like
the retina [43]. This implies that alterations in gut com-
mensal bacteria can impact the immune status of the
ocular surface. Disruption of intestinal homeostasis can
result in pathogenic microorganisms breaching the intes-
tinal mucosal barrier, leading to the release of inflam-
matory factors and activation of T and B lymphocytes,
culminating in disease development. The inflammatory
byproducts are then carried by lymphatic vessels to dis-
tant tissues, including the ocular surface. Recent studies
have gradually confirmed the connection between imbal-
anced intestinal microbiota and ocular diseases (Table 2).
In a 2020 study examining changes in the gut micro-
biome of patients with Sjogren’s syndrome-associated
dry eye (SS-Dry eye) [44], similar alterations to those
observed in other immune disorders [49, 50] were iden-
tified in SS-Dry eye. Includeding a decrease in the
abundance of the butyrate-producing bacterium Faeca-
libacterium, as well as reduced levels of Treg-inducing
Clostridiales and Bacteroides, which play a role in sup-
pressing the inflammatory response in Th17 cells [47].
Intestinal commensal bacteria play a role in achieving
mucosal immune tolerance by balancing Th17 and Treg
cells. Changes in gut microbiota in SS-Dry eye patients
suggest a link between gut microbiota and the robust
immune response at the ocular surface. This raises the
question: could this change be influenced by autoim-
mune antibody factors in SS subjects? A comparative
study on environmental factors and SS-associated dry eye
revealed both similarities and differences in the results of
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the two causative groups of dry eye [45]. The pathogen-
esis of environmental dry eye differs from that of SS dry
eye [51], with the former showing intermediate changes
in gut microbiota between SS-Dry eye and healthy indi-
viduals. Both groups exhibited an increase in Veillonella,
while environmental dry eye displayed a notable decrease
in Subdoligranulum. Additionally, SS-Dry eye showed
a decrease in the Firmicutes/Bacteroidetes ratio and a
decrease in Bifidobacterium, indicating potential intesti-
nal dysbiosis and the initiation of chronic inflammation
[52]. A previous study [47]also observed a reduction in
the butyrate-producing bacterium Eubacterium hallii in
SS-Dry eye. Butyrate, known for its anti-inflammatory
properties and maintaining the colonic epithelial bar-
rier, may suggest an imbalance in butyrate-associated
immunomodulatory mechanisms and intestinal barrier
function. Conversely, the p-diversity of environmental
dry eye does not show significant differences compared
to healthy [45, 46], with a composition that appears more
akin to normal. Notably, high levels of Bifidobacterium
bifidum was identified in SS through metagenome [46].
Bifidobacterium is commonly used as a probiotic in ani-
mal studies to reduce inflammation in mouse models of
SS [41]. However, in the current study, it may be impli-
cated in the ocular pathology of SS. The findings related
to Alistipes in this study are contradictory to previous
research [45]. These variability in the functions of the
same genera suggests that further functional studies on
commensal bacteria are essential to explore the role of
specific strains in disease development. More research
is needed to determine if there is a causal relationship
between certain strains and ocular disease. To further
investigate the potential role of gut-microbiota in influ-
encing ocular phenotype, researchers conducted trans-
planted with humanised faecal bacteria obtained from
individuals with dry eye to germ-free mice. The ocular-
cervical lymph nodes of the humanised mice exhibited
low levels of CD4*CD45"Foxp3*Treg and more severe
signs of corneal destruction. Additionally, a notable
decrease in CD4% Treg was observed in the cervical
lymph nodes and spleens of the offspring of the colonised
mice. Treg levels were found significantly decreased in
the cervical lymph nodes and spleens of offspring from
colonised mice, indicating that the development of Treg
cells regulated by intestinal microbiota may impact sub-
sequent generations through vertical transmission. This
suggests a potential genetic component in the develop-
ment of dry eye in children. Sterile mice colonised with
humanised faeces from dry eye patients showed ocular
surface symptoms. Additionally, an animal study revealed
that altering gut microbiota before exposure to dry-stress
resulted in significant changes in gut microbiota, leading
to increased global cell loss and disruption of the corneal
barrier, potentially linked to a reduction in commensal
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bacteria and an increase in pathogenic bacteria [47].
Intestinal interventions may serve as a potential avenue
for addressing ocular surface inflammation. The effi-
cacy of fecal transplants in treating intestinal conditions
like ulcerative colitis, suggesting a potential therapeutic
option for immune disorders linked to intestinal dysbio-
sis. A study conducted by ARJUN WATANE et al. [48]
highlighted the promising role of fecal transplants in alle-
viating symptoms of immune-mediated dry eye. How-
ever, further research is needed to address key aspects
such as measurement control, identification of optimal
donor microbiota composition, and potential impact of
varying dietary habits and living environments of donors
and recipients.

Limited research exists on the relationship between
gut microbiota and dry eye, factors such as disease dura-
tion and severity may impact gut microbiota changes.
Sjogren’s syndrome (SS) is typically diagnosed late
making it challenging to identify correlations between
specific antibodies like SSA/SSB and gut microbiota
alterations. Another point, current methods rely on 16 S
rRNA, potentially missing subtle changes. Establishing a
deeper connection between gut and eye requires exten-
sive animal experiments and histological studies.

Gut microbiota and other eye diseases

Uveitis

Uveitis is a prevalent eye disease and a major cause of
blindness. Abnormal autoimmune responses and inflam-
mation are playing significant roles in its development.
Similar to AMD and SS-Dry eye [47, 53], both patients
and animal models of uveitis show a decrease in the
diversity and number of intestinal microbiota, mak-
ing it easier for pathogenic bacteria to colonize [47, 54].
A reduction in beneficial butyrate-producing and anti-
inflammatory bacteria such as Faecalibacterium, Bacte-
roides, Lachnospira, Ruminococcus, Lachnospiraceae, and
Ruminococcaceae families.An increasing in the genera
Prevotella, Lactobacilli, Anaeroplasma, Parabacteroides,
and Clostridium was also observed in the intestinal tract
of mice with Experimental Autoimmune Uveitis [53, 55].
The molecular basis of how altered gut microbiota affects
uveitis remains unclear. It is hypothesized that disruption
of the blood-retinal barrier by autoreactive T cells target-
ing retinal antigens, possibly induced by commensal bac-
teria from the gut [56]. Uveitis is an inflammatory bowel
disease, accounting for approximately 4-6% of cases also
support a potential connection between gut and eyes
[57], where microbial antigens from the intestines could
trigger ocular inflammation by promoting the develop-
ment of auto-reactive Th17 cells and other T-helper cells.
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Age-related macular disease (AMD)

AMD is characterized by dysfunction of retinal pigment
epithelium cells and loss of photoreceptor cells. Vari-
ous factors, including diet influence the development
of AMD.Studies have shown a connection between gut
microbiota and neovascular AMD in both animal and
clinical research. Dietary habits can influence the com-
position of gut microbiota, potentially impacting the pro-
gression of AMD [53, 58]. A high glycemic index diet is a
significant risk factor for the development and progres-
sion of AMD in individuals without diabetes. This type
of diet is linked to specific changes including a decrease
and loss of RPE pigmentation, build-up of lipofuscin,
and deterioration of photoreceptor cells in animal stud-
ies. High-fat diet can worsen choroidal neovasculariza-
tion, increase intestinal permeability, and promote the
production of inflammatory molecules in mouse model
by enhancing the presence of Firmicutes. Research has
also identified an increase in pro-inflammatory bacte-
ria Anaerotruncus and Oscillibacter, which contribute
to intestinal permeability, in the intestines. Moreover,
higher levels of Ruminococcus torques and Eubacterium
ventriosum, associated with a high-fat diet were also
observed. Reductions in glutamate, the primary excit-
atory neurotransmitter in the retina, have been linked to
impairments in retinal neurotransmission, while elevated
levels of arginine have been correlated with progressive
choroidal retinal atrophy.

Bacterial keratitis (BK)/ fungal keratitis (FK)
Keratitis is an inflammatory disease of the eye, stud-
ies have found that the diversity of ocular surface flora
changes when bacterial keratitis occurs [59, 60], and
intestinal commensal bacteria can affect the susceptibil-
ity to ocular keratitis by affecting sIgA levels [61]. Animal
models have shown that gut microbiota can provide pro-
tection against Pseudomonas aeruginosa-induced kera-
titis by regulating mature neutrophils. An imbalance in
gut microbiota can increase susceptibility to ocular ker-
atitis, leading to higher bacterial load in the cornea and
increased production of inflammatory factors [61]. Fur-
thermore, in BK, there is a decrease in Firmicutes and an
increase in pro-inflammatory bacteria such as Prevotella
copri, Bilophila, pathogenic Enterococcus, Bacteroides (B.
fragilis), and CF231 genera, along with the presence of
gastroenteritis-inducing Dysgonomonas in immunocom-
promised patients. This is coupled with a decrease in the
anti-inflammatory bacterium Blautia [62].

FK is an infectious corneal disease associated with
a high risk of blindness, caused by pathogenic fungi.
Similar to other ocular diseases, patients with FK show
a reduction in the diversity of intestinal microbiota, and
decrease in genera such as Faecalibacterium prausnitzii,
Megasphaera, Mitsuokella multacida, and Lachnospira.
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Conversely, there is an increase in pro-inflammatory
bacteria like Enterobacteriaceae and pathogenic bacte-
ria such as Shigella, Treponema, and Bacteroides fragilis.
Notably, Shigella has also been associated with decreased
butyrate production [63, 64].

Studies are increasingly revealing the impact of micro-
biota and their byproducts on ocular inflammation and
immunity. These findings support the concept of an gut-
eye axis, shedding light on how gut microbiota influences
ocular surface diseases.

The gut-eye axis hypothesis

The imbalance of the ocular surface microenvironment,
inflammation, imbalance of the Th17/Treg, abnormal
activation of the immune system are key factors in the
development of dry eye [26]. Considering immune bal-
ance and metabolite production induced by gut micro-
biota, it is reasonable to suggest that gut microbiota may
influence eyes by affecting host immunity, creating a
potential gut-eye axis. This concept was supported in a
study using an animal model which interventions target-
ing the gut, such as fecal transplants containing a mixture
of probiotics and improved dry eye symptoms [41]. These
interventions targeted the gut were linked to improved
ocular surface inflammation and signs, providing further
evidence of the role of gut microbiota in ocular diseases
and suggesting the existence of an gut-eye axis.

The potential mechanisms of the gut-eye axis can be
summarized as follows: 1. Myeloid cells acting as trig-
gers. Intestinal commensal bacteria can development
and activation of macrophages originating. Myeloid cells
like CD103*CXCR1* dendritic cells or macrophages may
migrate from the gut to the ocular surface and leading
to the activation of T-cells which then travel to the eye
through lymphatic drainage fluid to exert their effects.
2. An imbalance between pro- and anti-inflammatory
cells.The decrease in Tregs can lead to an increase in gut-
derived helper T cells Th1 and Th17 cells, which migrate
to the ocular surface and lacrimal glands and then pro-
duce cytokines, causing damage to the ocular surface. 3.
Disrupt the production of SCFA. SCFAs play a significant
role in modulating both the proximal and distal immune
system, with their anti-inflammatory properties extend-
ing from the gastrointestinal tract to the ocular surface. A
decrease in SCFA levels can compromise the anti-inflam-
matory functions of macrophages.A decrease in the
abundance of Faecalibacterium, a key butyrate-produc-
ing genus has been observed in individuals with SS-dry
eye and FK [44, 47, 63]. 4. Molecular mimetic modeling
suggests that autoreactive T cell-mediated autoimmune
responses may arise due to the cross-reactivity between
microbial peptides and self-antigens. Pathogenic Th17
cells have the ability to migrate from the gut, to the
ocular surface contributing the autoimmune diseases
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through this cross-reactivity mechanism. The generation
of these pathogenic Th17 cells may be modulated by fac-
tors such as IL-23 and dietary components [65]. 5. The
T-cell threshold model suggests that Th17 cells, which
are activated by gut microbes, may travel to target organs
through draining lymph nodes. This migration can
decrease the activation threshold for autoreactive T cells,
including Teff cells. 6. The neuropeptide cycle hypothesis
suggests that neuropeptide Y, substance P, and vasoactive
intestinal peptide from the gut are crucial in regulating
tear secretion [66]. Given the abundance of nerve distri-
butions in the eye, exploring how this gut-derived neu-
ropeptide cycle impacts tear secretion in the lacrimal
glands could offer further insights into the intricate gut-
eye axis.

Discussion

The intestine is a complex organ containing trillions of
microbial inhabitants that significantly contribute to
digestion as well as the development and maintenance
of the immune system. The overall health of the host is
closely linked to the balance or imbalance of these intesti-
nal microorganisms. Given its distinct immune and phys-
iological properties, the intestinal microbiota has become
a major focus of research for exploring potential mecha-
nisms involved in the onset and progression of various
diseases. One emerging area of interest is the connection
between gut microbiota and eye diseases, known as the
‘gut-eye axis! Studies have indicated that disturbances
in intestinal microbiota are related to multiple eye con-
ditions such as AMD, uveitis, and corneal inflamma-
tion. Notable disparities have been documented in the
gut and ocular surface microbiota composition among
individuals with eye disease and those who are healthy,
potentially impacting the development and progression
of such conditions. Various sequencing techniques can
yield different types of bacteria at the genus or species
level. Presently, most studies on the connection between
ocular surface diseases and microbiota depend on 16s
rRNA sequencing, concentrating on alterations in diver-
sity and structure. Metagenomics is applied to examine
the ocular surface, where bacterial presence is limited.
This method enables prompt identification and response
to newly detected pathogens. The detailed resolution of
metagenomics assists in distinguishing between benefi-
cial and potentially harmful bacteria, including fungi and
viruses, as evidenced in bacterial infections such as kera-
titis. Certain pathogens like Cutibacterium acnes, Staph-
ylococcus aureus, Moraxella lacunata, Pseudomonas
alcaligenes, and HSV Simplex virus type 2 have been rec-
ognized [67], emphasizing the potential for personalized
treatment strategies based on the individual’s microbi-
ome profile [68, 69]. While metagenomics shows prom-
ise for investigating microbiome-disease connections, its



Song et al. BMC Ophthalmology (2024) 24:262

substantial initial expense poses a challenge to clinical
investigations. Nonetheless, simply identifying microbial
species does not fully elucidate the microbiota’s impact
on dry eye pathogenesis. Further research into commu-
nity relationships is crucial for uncovering the underly-
ing mechanisms and pathways.Current studies primarily
focus on the complex interaction between gut microbiota
and the host’s immune system. For example, metabolites
produced by gut microbiota, such as short-chain fatty
acids, can migrate to the eyes via the blood circulation
and boost the generation of ocular Tregs. These Tregs
aid in suppressing exaggerated immune responses, pre-
serving immune tolerance, and regulating the immune
equilibrium and inflammatory reaction in the eye. This
investigation also provides new potential treatment tar-
gets for eye ailments, including utilizing probiotics, pre-
biotics, and antibiotics. Adjusting the gut microbiota
composition, like through fecal microbial transplanta-
tion, may potentially confer benefits for eye diseases.
While this approach has displayed encouraging outcomes
in animal models, difficulties emerge due to the complex-
ity of human dietary habits compared to the relatively
simplistic animal diet. Variations in dietary choices and
behaviors among individuals can impact the efficacy of
probiotics and prebiotics, making research interpretation
more intricate. In addition to the variability in efficacy
caused by factors such as diet, gender, and geographical
location, there are also different ‘Intestinal Type’ and ‘Eye
Community State Types’ among individuals. It is impor-
tant to explore these variations separately and develop
personalized plans, which may aid in improving the diag-
nosis of DED and achieving the best treatment outcomes
[70, 71]. The connection between changes in gut micro-
biota and shifts in ocular surface microbiota, as observed
in dry eye syndrome, remains uncertain. Future studies
should concentrate on unraveling the mechanisms that
connect gut microbiota to eye disorders, pinpointing
particular bacterial strains and metabolites linked to eye
wellness, and performing animal and clinical trials to
confirm their efficiency and safety. Additionally, explor-
ing the influence of age, sex, and other variables on the
correlation between gut microbiota and eye diseases is
crucial.

Conclusions

Recent studies have found a notable link between gut
microbiota and eye conditions, referred to as the ‘gut-eye
axis. Disruption in gut microbiota can affect overall and
ocular immune responses via different routes, potentially
resulting in eye disorders. Treatments like fecal micro-
biota transplantation targeting gut microbiota regulation
could have a positive effect on eye conditions. Although
this field of research is still in the investigative and theo-
retical stage, it shows potential in unveiling the precise
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connections between gut microbiota and eye conditions,
providing fresh possibilities for preventing and managing
such conditions.
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