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Abstract
Background  This study aimed to explore differences in vitreous humour metabolites and metabolic pathways 
between patients with and without diabetic retinopathy (DR) and identify potential metabolite biomarkers.

Methods  Clinical data and vitreous fluid samples were collected from 125 patients (40 without diabetes, 85 
with DR). The metabolite profiles of the vitreous fluid samples were analysed using ultra-high performance liquid 
chromatography, Q-Exactive mass spectrometry, and multivariate statistical analysis. A machine learning model based 
on Least Absolute Shrinkage and Selection Operator Regularized logistic regression was used to build a risk scoring 
model based on selected metabolite levels. Candidate metabolites were regressed to glycated haemoglobin levels by 
a logistic regression model.

Results  Twenty differential metabolites were identified between the DR and control groups and were significantly 
enriched in five Kyoto Encyclopedia of Genes and Genomes pathways (arginine biosynthesis; tricarboxylic acid cycle; 
alanine, aspartate, and glutamate metabolism; tyrosine metabolism; and D-glutamate metabolism). Ferrous ascorbate 
significantly contributes to poorer glycaemic control outcomes, offering insights into potential new pathogenic 
pathways in DR.

Conclusions  Disorders in the metabolic pathways of arginine biosynthesis, tricarboxylic acid cycle, alanine, aspartate, 
glutamate metabolism, tyrosine metabolism, and D-glutamate metabolism were associated with DR. Risk scores 
based on vitreous fluid metabolites can be used for the diagnosis and management of DR. Ferrous ascorbate can 
provide insights into potential new pathogenic pathways for DR.
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Background
Diabetic retinopathy (DR) is the most common microvas-
cular complication in patients with diabetes and the lead-
ing cause of visual impairment and blindness worldwide. 
The International Diabetes Federation projects that the 
global population with diabetes will reach 700 million by 
2045 [1]. Patients with long-term diabetes develop mac-
rovascular complications, including heart disease, stroke, 
and peripheral arterial obstructive disease which even-
tually lead to death in 70% of cases; microvascular com-
plications mainly cause nephropathy, retinopathy, and 
neuropathy [2]. Among the risk factors for DR progres-
sion, haemoglobin A1c (HbAlc) has the greatest impact. 
Compared with patients with HbAlc < 7.0%, those with 
HbAlc > 10.0% have a higher risk of progression to inci-
dent DR, referable DR, diabetic macular oedema, and 
proliferative diabetic retinopathy (PDR) [3]. The United 
Kingdom Prospective Diabetes Study reported that pro-
longed hyperglycaemia exposure leads to negative meta-
bolic memory that reduces the potential impact of good 
glycaemic control, highlighting the necessity for early and 
appropriate treatment of hyperglycaemia and associated 
metabolic disorders [4].

Untargeted metabolomic analysis is an unbiased inves-
tigation of all metabolites within a sample and can reveal 
biologically relevant changes within a system. Previous 
metabolomic studies in patients with pre-diabetes and 
type 2 diabetes revealed that changes in amino acid and 
lipid concentrations can be used as biomarkers to iden-
tify at-risk patients and monitor disease progression and 
treatment efficacy [5]. Metabolic and functional changes 
of retinal tissue, along with systemic reactions during 
DR progression, can lead to structural and molecular 
alterations in the vitreous, reflecting pathological events 
at the vitreoretinal interface and characterising the dia-
betic condition. Consequently, vitreous alterations can 
impact the diabetic retina pathologically, contributing 
to a vicious cycle of disease progression [6]. Because 
the vitreous is attached to the retina, structural and bio-
chemical changes in the vitreous can reflect the patho-
physiological processes in retinal tissue [7]. Therefore, 
vitreous fluid-based metabolomic studies contribute to 
the understanding of DR pathogenesis and development 
of new therapeutic targets.

To date, the incomplete metabolic profile of the vitre-
ous in healthy and diseased states has hindered differ-
entiation of metabolic characteristics in diseased retinas 
[8], resulting in limited descriptions of human vitreous 
metabolism focused on a small subset of metabolites. 
Barba et al. observed increased lactate and decreased 
ascorbate in a metabolomic analysis of vitreous humor 
from 22 patients with PDR and 22 non-diabetic patients 
with macular lentigines [9]. Paris et al. examined vit-
reous humour samples from 20 PDR patients and 31 

non-diabetic patients with anterior retinal or macu-
lar tears, reporting increased levels of arginine, proline, 
and allantoin [10]. Additionally, Haines et al. noted an 
increase in pyruvate and purine-related pathways [8]. 
While these initial studies lay the groundwork for future 
research, they are insufficient to construct a complete 
metabolic profile and require expanded sample sizes for 
thorough investigation. Therefore, we included vitre-
ous humour from patients with diabetic retinopathy and 
retinopathy without diabetes in our study to identify 
metabolic signatures of the disease through untargeted 
metabolomics.

This non-targeted metabolomics study of vitreous fluid 
obtained from patients with DR used liquid chromatog-
raphy coupled with high-resolution mass spectrometry 
(LC-MS) with the aim to investigate changes in metab-
olites and metabolic pathways in the vitreous fluid of 
patients with DR, which can help identify new therapeu-
tic targets.

Methods
Study participants and sample collection
The study was conducted at the Ophthalmology Depart-
ment of First Hospital of Jilin University between January 
2022 and March 2023. The protocol was approved by the 
Ethics Committee of the First Hospital of Jilin University 
and conducted in accordance with the ethical standards 
for human experimentation and Declaration of Helsinki 
(2013). Participants signed informed consent before vit-
reous fluid samples were collected. Inclusion criteria 
for the experimental group comprised type 2 diabetic 
patients with DR requiring vitrectomy, while the con-
trol group consisted of non-diabetic patients with mac-
ular lentigines, retinal lentigines, retinal detachments, 
and macular antrums necessitating vitrectomy. Clini-
cal data and vitreous fluid samples were collected from 
125 patients (Fig.  1). Exclusion criteria for both groups 
included [11]: (1) having other ocular diseases (including 
glaucoma and uveitis); (2) history of ocular surgery; (3) 
undergoing anti-VEGF therapy; and (4) history of severe 
systemic inflammatory disease. The experimental group 
included 85 patients with diabetes mellitus type 2 with 
DR. The control group included 40 patients without dia-
betes with macular fissure (n = 7), retinal fissure (n = 1), 
retinal detachment (n = 26), and pre-macular mem-
brane (n = 6). DR was classified into non-proliferative 
DR (NPDR) and PDR based on the presence or absence 
of neovascularisation. The early stage of proliferation 
was characterised by the presence of neovascularisa-
tion of the retina elsewhere or neovascularisation of the 
disc. The fibro-proliferative stage was characterised by 
the presence of a fibrovascular membrane, which may be 
combined with preretinal haemorrhage or vitreous haem-
orrhage. The late proliferative stage was characterised by 
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the presence of retinal detachment, which may be com-
bined with fibrovascular membrane, preretinal haemor-
rhage, or vitreous haemorrhage. All patients underwent 
a preoperative ophthalmologic examination. The 85 
patients in the experimental group were categorised into 
NPDR (n = 8), early proliferative stage (n = 7), fibroprolif-
erative stage (n = 23), or late proliferative stage (n = 47).

Descriptive statistics for demographic and clinical 
variables were calculated. Medical history, age, sex body 
mass index (BMI), and duration of disease were obtained. 
Blood and urine laboratory tests included fasting blood 
glucose (FBG), glycosylated HbA1c, serum creatinine 
(SCR), triglycerides (TG), high-density lipoprotein cho-
lesterol (HDL-C), low-density lipoprotein cholesterol 
(LDL-C), total cholesterol (TC), retinol-binding protein 
(RBP), recombinant apolipoprotein A1, and apolipopro-
tein B. Data were analysed using IBM SPSS Statistics for 
Windows, version 27.0 (IBMCorp., Armonk, N.Y., USA). 
Missing data were removed sequentially. Nonparametric 
data were expressed as median (interquartile spacing), 
parametric data as mean ± SD, and categorical variables 
as numbers and percentages. Differences between cat-
egorical variables were assessed using the chi-square and 
Fisher’s exact tests. Independent samples t-tests were 
used to calculate significant differences between para-
metric continuous variables, and the Wilcoxon rank-sum 
test was applied to nonparametric continuous variables. 
Statistical significance was set at p < 0.05.

The procedures were performed by the same experi-
enced chief surgeon at the First Hospital of the Jilin Uni-
versity Ophthalmology Department. Vitreous sampling 

was performed by the same ophthalmologist to prevent 
systematic errors. Vitreous fluid samples were collected 
during vitrectomy, 0.3 mL of vitreous was collected and 
stored in sterile tubes, which were immediately cooled 
and stored at -80 °C [11].

Sample preparation for metabolomics
Overall, 50 µL of vitreous fluid was added to 100 µL of 
methanol: acetonitrile (1:l, V/V) [12]. The mixed sample 
was vortexed for 30 s at 4 °C and sonicated for 10 min (ice 
bath). The sonicated sample was incubated in a refrigera-
tor at -20 °C for 1 h and centrifuged at 4 °C and at high 
speed (15,000  rpm) for 15  min. The supernatant was 
collected, placed in an injection vial, and injected into 
the sample for analysis. Biological quality control (QC) 
samples were made from 10 µL of each sample from all 
groups, and QC samples were inserted into the sample 
cohort to monitor and assess system stability.

Liquid chromatography/mass spectrometry
The metabolites were separated using an ACQUITY 
UPLC system (Waters, USA) [13, 14]. The liquid phase 
conditions were performed as specified (see Table S1, 
Additional file 1, which demonstrates liquid phase 
conditions).

Ion detection was performed using a Q-Exactive quad-
rupole electrostatic field orbital trap ultrahigh-resolu-
tion mass spectrometer. Quantification was performed 
by simultaneous scanning of positive and negative ions. 
Mass spectrometry conditions and acquisition methods 
were shown in Tables S2 and S3, Additional file 1.

Fig. 1  Initial study of human vitreous metabolism
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Statistical analyses
The raw data were processed for peak detection, extrac-
tion, alignment, and integration using Compound Dis-
coverer software. The pre-processed raw data were 
imported into Metaboanalyst 5.0 (Xia Lab, McGill Uni-
versity, Montreal, Canada) for multivariate statistical 
analysis after normalisation, data transformation, and 
scaling for principal component analysis (PCA) and 
orthogonal partial least squares discriminant analysis 
(OPLS-DA) using a two-sample t-test to identify altered 
metabolites in patients with univariate-level DR [15, 
16]. Metabolites with variable importance of prediction 
threshold (VIP) values > 1 in the OPLS-DA analysis and 
p < 0.05 in the univariate analysis were considered sig-
nificantly different metabolites and receiver operating 
characteristic (ROC) curves were plotted. The obtained 
differential metabolite kernel ratios and ion patterns 
were imported into the Human Metabolome Database 
(HMDB) to identify metabolites [17, 18] and correlation 
analysis was performed with R package ‘corrplot’. Path-
way enrichment analysis was performed by Metaboana-
lyst 5.0 to screen out the differential metabolic pathways 
that could significantly differentiate (p < 0.05) between 
DR patients and healthy controls. The Least Absolute 
Shrinkage and Selection Operator Regularized logistic 
regression (LASSO-LR) feature selection method was 
performed by the R package ‘glmnet’ to evaluate the dis-
criminatory ability of each feature for the sample catego-
ries, obtain the distribution of the content of the filtered 
features in the two groups, construct the model by taking 
the Ln of the quantitative values of the metabolites, and 
obtain the scoring formula of the risk score [19]. Pearson’s 
linear correlation analysis between DR risk score and 
HbAlc was performed using SPSS. To further explore the 
association between vitreous humour metabolites and 
systemic glycaemic control, HbAlc > 6.5% was set as the 
ending variable, and the raw data of the nine metabolites 
were set as independent variables after normalisation by 
sum, log transformation, and auto-scaling, respectively, 
and were measured by age, sex, presence of hyperten-
sion, BMI, systolic blood pressure (SBP), diastolic blood 
pressure (DBP), TG, TC, HDL-c, LDL-c, FBG, serum cre-
atinine, RBP, and duration of diabetes mellitus were used 
as cofactors to adjust the logistic regression model. The 
results are presented by plotting the odds ratios (ORs) 
values, 95% confidence intervals (CIs), and p-values on 
a forest plot using GraphPad Prism 9.5.0 for Windows 
(GraphPad Software, San Diego, California USA).

Results
Clinical features of patients
Table  1 presents the demographic and clinical informa-
tion of vitreous samples from the study population. The 
results indicated a significantly higher prevalence of 

hypertension in the DR experimental group compared 
to the control group (p = 0.001). Additionally, levels of 
SBP (p = 0.03), HbA1c (p < 0.001), FBG (p < 0.001), SCR 
(p = 0.006), and RBP (p = 0.001) were significantly higher 
than in the control group. In terms of complications, 
patients in the DR experimental group were significantly 
more prone to nephropathy, neuropathy, and heart dis-
ease than those in the control group. Metabolites were 
affected by the lens and partially originated from cir-
culating plasma before filtration by the ciliary body. No 
significant difference in IOL ocular status was observed 
between the experimental and control groups, indicating 
that lens status did not influence the study results.

Analysis of metabolic profiles and metabolic pathways
A total of 1,465 metabolites were identified in vitre-
ous fluid samples collected from 85 patients in the 
DR experimental group and 40 non-diabetic control 
patients, respectively. The experimental and control 
groups showed significant separation and differences 
in both PCA (Fig. 2A) and thermograms (Fig. 2B), indi-
cating good differences between groups. A total of 456 
metabolites with p < 0.05 were screened using a two-sam-
ple t-test (Fig.  2C). OPLS-DA (Fig.  2D) was performed 
to obtain 169 metabolites associated with DR accord-
ing to the VIP value of (Fig.  2E). A total of 69 metabo-
lites with fold change (FC) > 2 or FC < 0.5 were screened 
by FC analysis (Fig.  2F), with 23 metabolites showing 
upregulated expression levels and 46 metabolites show-
ing decreased expression levels in the experimental 
group. The mass-to-core ratios and ion patterns corre-
sponding to the 69 screened metabolites were imported 
into the HMDB, and 20 differential metabolites were 
identified  (Table 2). The 11 differential metabolites in 
positive ion mode were N-acetylhistidine, N-linoleoyl 
glycine, thioxanthine monophosphate, tridecanoylgly-
cine, uridine 5’-diphosphate, succinylacetone, N-palmi-
toyl asparagine, phenylalanylglycine, ferrous ascorbate, 
6-[3-(2-carboxyethyl)-5-hydroxyphenoxy]-3,4,5-tri-
hydroxyoxane-2-carboxylic acid, and L-glutamic acid 
5-phosphate. The nine differential metabolites in nega-
tive ion mode were threonic acid, oxoglutaric acid, 
fumaric acid, malonic acid, S-nitrosoglutathione, male-
ylacetoacetic acid, cortolone-3-glucuronide, tetrahy-
droaldosterone-3-glucuronide, and selenocystine. The 
sensitivity of the identified metabolites was assessed 
by ROC curve analysis (see Figure S1, Additional file 1, 
which shows ROC curves for 20 differential metabolites). 
The following top six metabolites were selected as DR 
candidate biomarkers: tetrahydroaldosterone-3-gluc-
uronide, phenylalanylglycine, cortolone-3-glucuronide, 
6-[3-(2-carboxyethyl)-5-hydroxyphenoxy]-3,4,5-trihy-
droxyoxane-2-carboxylic acid, L-glutamic acid 5-phos-
phate, and ferrous ascorbate, with p-values of 
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0.00030374,0.0000937, 0.00015204, 0.00012039, 
0.00023063, and 0.00085142, respectively, and areas 
under the curve (AUCs) of 0.895 (95% CI = 0.825–0.953), 
0.906 (95% CI = 0.848–0.957), 0.876 (95% CI = 0.805–
0.934), 0.867 (95% CI = 0.786–0.936), 0.859 (95% 
CI = 0.767–0.933), and 0.844 (95% CI = 0.762–0.912), 
respectively (Fig. 3).

To further investigate the interrelationships among 
significantly different metabolites, we performed cor-
relation analysis using R package ‘corrplot’ and network 
graph presentation using R package ‘igraph’ (Fig.  4A). 
The HMDB IDs of the above 20 metabolites were further 
entered into MetaboAnalyst 5.0, and further metabolic 
pathway enrichment analysis (Fig.  4B) showed that 20 
of the differential metabolites were involved in 10 meta-
bolic pathways, of which 5 metabolic pathways were sig-
nificantly associated with metabolites (p < 0.05): arginine 

biosynthesis, citrate cycle (tricarboxylic acid [TCA] 
cycle), alanine, aspartate, and glutamate metabolism, 
tyrosine metabolism, and D-glutamine and D-glutamate 
metabolism. The greatest significance was found for the 
arginine biosynthesis metabolic pathway (p = 0.00113).

Metabolite screening and regression analyses
To further elucidate the metabolic characteristics of 
DR, the LASSO-LR model was used to select diagnos-
tic metabolites and a more refined model was obtained 
by constructing a penalty function that reduced the 
regression coefficients of some non-important fea-
tures to zero. The optimal λ value in the LASSO model 
was obtained using the minimum error as the crite-
rion. The normalised path of the LASSO-LR model 
was calculated on a grid of normalisation parameter 
values, which identified nine differentially expressed 

Table 1  Demographic and clinical information of the study population
Variables Control (n = 40) DR (n = 85) p-value
Sex (male/female)* 12/28 37/48 0.148
Age (years)† 60 (52,65) 55 (51,60) 0.068
Pseudophakia (yes/no)%* 1/39 4/81 0.922
Intraocular surgeries (yes/no)%* 1/39 4/81 0.922
SBP (mmHg)‡ 136.12 ± 19.9 145 ± 21.68 0.03*

DBP (mmHg)‡ 85.33 ± 11.08 84.13 ± 13.57 0.628
Hypertension (yes/no)%* 12/28 51/34 0.001**

BMI (kg/m2)‡ 24.95 ± 4.17 25.58 ± 3.15 0.401
HbA1c (%)† 4.8 (4.57,5.15) 7.9 (6.6,9) < 0.001**

FBG (mmol/L)† 5.41 (4.95,6) 7.3 (5.15,9.67) < 0.001**

SCR (µmol/L)† 60.7 (51.73,74.65) 78.4 (56.2,114.5) 0.006
TC (mmol/L)‡ 4.69 ± 1.09 5.09 ± 1.32 0.1
HLD-c (mmol/L)† 1.11 (0.98,1.18) 1.13 (0.98,1.28) 0.404
LDL-c (mmol/L)† 3.08 (2.54,3.62) 3.11 (2.67,3.98) 0.388
TG (mmol/L)† 1.9 (1.08,2.81) 1.54 (0.99,2.78) 0.537
RBP (mg/L)† 41.65 (38.4,53.9) 57 (45,73) 0.001**

Apoa-1 (g/L)‡ 1.3 ± 0.18 1.25 ± 0.23 0.434
ApoB‡ 0.96 ± 0.2 0.94 ± 0.26 0.76
Duration of DM (years) - 10(5,17) -
Complications
Nephropathy (yes/no) % 1/39(2.5%) 12/73 (14.12%) 0.095
Neuropathy (yes/no) % 0/40(0%) 13/72 (15.29%) 0.022*

Heart disease (yes/no) % 3/37(7.5%) 10/75 (11.76%) 0.678
DME (yes/no) % - 6/79 (7.06%) -
Treatment
Insulin treatment (yes/no) % - 79/6 (92.94%) -
Metformin treatment
(yes/no)%

- 15/70 (17.65%) -

Photocoagulation (yes/no) % - 31/54 (36.47%) -
Non-parametric data are presented as median (interquartile range) and parametric data as mean ± SD. *p < 0.05 and **p < 0.01

* Chi-square test

†Mann–Whitney–Wilcoxon test

‡Independent samples t-test

SBP, systolic blood pressure; DBP, diastolic blood pressure; BMI, body mass index; FBG, fasting blood glucose; TC, total cholesterol; HDL-C, high-density lipoprotein; 
LDL-C, low-density lipoprotein; TG, triglycerides; RBP, Retinol-Binding Protein; DME, diabetic macular oedema
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metabolites (Fig.  5A). LASSO-LR modelling was per-
formed after taking Ln for the quantitative values of 
metabolites to obtain the risk score formula for DR: y = 
26.50 + 0.43*Ln(phenylalanylglycine) + 0.058*Ln(ferrous 
ascorbate) -0.62*Ln(N-acetylhistidine) -0.61*Ln(N-
linoleoyl glycine) -0.19*Ln(maleylacetoacetic acid) 
-1.43*Ln(tridecanoylglycine) -0.13*Ln(succinylacetone) 
+ 0.30*Ln(tetrahydroaldosterone-3-glucuronide) + 
0.61*Ln(6-[3-(2-carboxyethyl)-5-hydroxyphenoxy]-3,4,5-
trihydroxyoxane-2-carboxylic acid). Based on the rela-
tionship between the distribution of risk scores and the 
extent of DR, the incidence of DR was significantly lower 
in the low-risk score group than the high-risk score group 
(Fig. 5B), and the risk scores were significantly higher in 
the DR group than in the control group (Fig.  5C). The 
ROC curve was plotted to assess the efficacy of the risk 
score and the AUC was 0.998 (Fig.  5D). Pearson linear 
correlation analysis (r2 = 0.606, p < 0.0001) showed that 
DR risk score was positively correlated with HbA1c levels 
(Fig. 5E).

To further explore the association between vitre-
ous humour metabolites and systemic glycaemic con-
trol, HbAlc > 6.5% was used as the outcome variable, 
and nine metabolite intensities were used as indepen-
dent variables, respectively, and age, sex, presence of 
hypertension, BMI, SBP, DBP, TC, TG, HDL-c, LDL-c, 
RBP, FBG, serum creatinine, and duration of diabe-
tes mellitus as the cofactors adjusted logistic regression 
model. Phenylalanylglycine, ferrous ascorbate, and 

tetrahydroaldosterone-3-glucuronide significantly con-
tributed to poorer glycaemic control outcomes (p < 0.05) 
(Fig. 6).

Discussion
In this study, metabolomic analysis revealed that 20 
metabolites, including ferrous ascorbate, phenylalanyl-
glycine, and tetrahydroaldosterone-3-glucuronide, were 
differentially expressed in DR versus non-DR patients 
and established a risk score formula based on nine 
metabolites with the most significant differences, which 
was useful for diagnosing DR and evaluating DR sever-
ity. We further showed that phenylalanylglycine, ferrous 
ascorbate, and tetrahydroaldosterone-3-glucuronide 
were risk factors for the level of glycaemic control, high-
lighting the potential of vitreous fluid biomarkers for dis-
ease prediction.

We observed significant differences in arginine bio-
synthesis; tricarboxylic acid cycle; alanine, aspartate, 
and glutamate metabolism; tyrosine metabolism; and 
D-glutamate metabolism pathways in patients with DR 
compared with controls, suggesting the presence of oxi-
dative stress damage and mitochondrial dysfunction. 
Previous LC-MS metabolomic studies based on atrial 
fluid and serum reported similar results [20–22]. Kyoto 
Encyclopedia of Genes and Genomes results revealed 
that oxoglutaric acid was involved in arginine biosynthe-
sis; the tricarboxylic acid cycle; alanine, aspartate, and 
glutamate metabolism; and the D-glutamate metabolism 

Table 2  Differential metabolic markers identified in metabolomics analysis
Metabolite Fold change (E/C) VIP Elements m/z Reference Ion Trend AUC p-value
Phenylalanylglycine 7.50 1.05 HMDB0028995 223.11 [M + H] + 1 ↑ 0.91 3.04E-04
Tetrahydroaldosterone-3-glucuronide 2.29 1.25 HMDB0010357 539.25 [M-H]-1 ↑ 0.89 9.37E-05
Cortolone-3-glucuronide 2.82 1.16 HMDB0010320 541.27 [M-H]-1 ↑ 0.87 1.52E-04
6-[3-(2-carboxyethyl)-5-hydroxyphenoxy]-3,4,
5-trihydroxyoxane-2-carboxylic acid

3.45 1.11 HMDB0128026 359.10 [M + H] + 1 ↑ 0.86 1.20E-04

L-Glutamic acid 5-phosphate 3.01 1.03 HMDB0001228 228.03 [M + H] + 1 ↑ 0.86 2.31E-04
Ferrous ascorbate 3.49 1.02 HMDB0303656 232.97 [M + H] + 1 ↑ 0.84 8.51E-04
S-Nitrosoglutathione 2.41 1.49 HMDB0004645 335.07 [M-H]-1 ↑ 0.82 2.17E-06
Succinylacetone 0.21 2.12 HMDB0000635 159.07 [M + H] + 1 ↓ 0.77 1.99E-14
N-Acetylhistidine 0.29 2.18 HMDB0032055 198.09 [M + H] + 1 ↓ 0.72 1.31E-16
Uridine 5’-diphosphate 0.25 1.65 HMDB0000295 405.01 [M + H] + 1 ↓ 0.65 3.63E-09
Maleylacetoacetic acid 0.36 1.81 HMDB0002052 199.03 [M-H]-1 ↓ 0.61 7.92E-13
Malonic acid 0.38 1.98 HMDB0000691 103.00 [M-H]-1 ↓ 0.60 7.35E-15
N-Linoleoyl Glycine 0.30 1.74 HMDB0241917 270.26 [M + H] + 1 ↓ 0.59 5.32E-13
Fumaric acid 0.39 1.34 HMDB0000134 115.00 [M-H]-1 ↓ 0.57 1.19E-07
Oxoglutaric acid 0.41 1.13 HMDB0000208 145.01 [M-H]-1 ↓ 0.56 1.08E-05
Selenocystine 0.47 1.64 HMDB0004122 334.91 [M-H]-1 ↓ 0.56 1.46E-09
Threonic acid 0.41 1.82 HMDB0000943 135.03 [M-H]-1 ↓ 0.55 2.37E-11
N-palmitoyl asparagine 0.36 1.11 HMDB0241921 261.04 [M + H] + 1 ↓ 0.55 1.62E-06
Thioxanthine monophosphate 0.43 1.76 HMDB0060876 264.98 [M + H] + 1 ↓ 0.53 2.12E-11
Tridecanoylglycine 0.29 1.44 HMDB0013317 272.22 [M + H] + 1 ↓ 0.52 1.13E-06
The trend indicates that the expression level of the differential metabolite in the experimental group shows either an increase or decrease compared to the control 
group. “↑” indicates an increase and “↓” indicates a decrease



Page 7 of 12Liu et al. BMC Ophthalmology          (2024) 24:270 

Fig. 3  ROC curves: Y-axis: sensitivity, X-axis: 1-specificity (false positive rate). ROC, receiver operating characteristic

 

Fig. 2  (A) Two-dimensional score map of the PCA model: red indicates the control group, green the experimental group, and blue the QC group, with 
good reproducibility within and between-group variability. (B) Heatmap of hierarchical clustering: each coloured cell on the map corresponds to a con-
centration value in the data table, identifying clusters with increasing (orange) or decreasing (blue) metabolite profiles. (C) Two-sample t-test: Metabolites 
screened for differences at P < 0.05 are in red, and non-significant metabolites in grey. (D) OPLS-DA score plot: red indicates the control group, green 
indicates the experimental group, the plot indicates a large difference between groups and within groups. (E) VIP-spot: the horizontal coordinate is the 
VIP value, and the vertical coordinate is the metabolite marker. (F) FC analysis: red indicates differential metabolites exceeding a given threshold (FC > 2 or 
FC < 0.5), and grey indicates non-significant metabolites. FC, fold change; OPLS-DA, orthogonal partial least squares discriminant analysis; PCA, principal 
component analysis
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pathway. Fumaric acid is involved in arginine biosynthe-
sis; the tricarboxylic acid cycle; alanine, aspartate, and 
glutamate metabolism; and the tyrosine metabolism 
pathway. Maleylacetoacetic acid is involved in tyrosine 

metabolism. Our results indicate decreased levels of the 
three substances in the vitreous fluid of patients with 
DR. Arginine, a semi-essential amino acid, is one of the 
most glucose-dependent insulinotropic secretagogues 

Fig. 5  (A) Screening of metabolites by LASSO regression. Using the minimum criterion for λ(log) and 1 standard error of the minimum criterion (1-SE 
criterion), with vertical dashed lines plotted at the optimal values. (B) Distribution of risk scores in the DR and control groups. (C) Statistical analysis of the 
distribution of risk scores between the DR and control groups (****p < 0.0001). (D) ROC curves were plotted to assess risk score efficacy. (E) Linear cor-
relation analysis between risk scores and HbA1c levels. LASSO, Least Absolute Shrinkage and Selection Operator; ROC, receiver operating characteristic

 

Fig. 4  (A) Correlation analysis based on metabolic networks, red lines indicate positive correlations and blue lines indicate negative correlations. (B) 
Results of pathway enrichment analysis: colour indicates p-value, darker colour indicates smaller p-value and stronger significance
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and a substrate for nitric oxide synthase and arginase, 
which can significantly affect vascular endothelial cells 
through NO production [23]. Elevated proline, orni-
thine, citrulline, and arginine levels have been found in 
the vitreous humour in patients with PDR, suggesting 
that arginine metabolism disturbances are mediators of 
DR pathogenesis [10]. Glycolysis and tricarboxylic acid 
cycle are the major pathways of energy metabolism. 
The α-ketoglutarate (αKG) is a key molecule in the TCA 
cycle that determines the rate. In the TCA cycle, αKG is 
decarboxylated to succinyl coenzyme and CO2 via αKG 
dehydrogenase, which is the key control point of the 
TCA cycle. The αKG can be produced from glutamate 
via oxidative deamination by glutamate dehydrogenase, 
where glutamate is a common amino donor [24]. In 
addition to oxygen partial pressure, αKG, iron ions, and 
ascorbic acid can modulate the activity of prolyl hydroxy-
lase and hypoxia-inducible factor 1 (HIF-1) expression 
[25, 26]. Our results revealed low levels of αKG, fumaric 
acid, and succinylacetone in patients with DR. Further-
more, intermediates in the TCA cycle, including citrate, 
2-α-ketoglutarate, L-malate, and succinate, were sig-
nificantly reduced in patients with diabetes patients in a 
previous study, suggesting that reductions in the mito-
chondrial tricarboxylic acid cycle were associated with 
DR [27]. Alanine may participate in and regulate glucose 
metabolism through the hypothalamic-pituitary-adrenal 
axis by stimulating N-methyl-D-aspartate receptors to 
influence glucose metabolism and subsequently inhibit 
insulin secretion [28]. Glutamate accumulation in retinal 
cells contributes to death in many cell types via a variety 
of mechanisms, producing excess NO and exacerbating 
oxidative stress [29]. Glutamine is secreted by Müller 
cells into the extracellular space where it is taken up by 
neurons and converted into γ-aminobutyric acid (GABA) 

or glutamate. Hyperglycaemia, the accumulation of glu-
tamate, and reduced glutamine synthetase activity can 
lead to the loss of neuronal glutamine availability, result-
ing in glutamate excitotoxicity, causing physiological 
damage to the retina through oxidative stress, inflamma-
tion, and neuronal apoptosis [28].

This is the first report showing that ferrous ascorbate, 
identified from metabolomic analysis, has an elevated 
concentration in the vitreous fluid of patients with DR, 
with an AUC of 0.844 (95% CI = 0.762–0.912) for the 
diagnosis of DR, and that it significantly contributes to 
poorer levels of glycaemic control, with implications for 
DR severity. Several studies have shown that ascorbic 
acid is involved in free radical scavenging as an antioxi-
dant, and impaired ascorbic acid metabolism in diabe-
tes patients who developed DR causes a downregulation 
of ascorbic acid levels compared to those who did not 
develop DR [30, 31]. Except for dioxygen and reactive 
oxygen species (ROS) products, the only natural mobile 
electron donor capable of transferring electrons between 
the plasma and ferritin core is ascorbic acid, and its 
redox product, the ascorbate radical, and superoxide, as 
a source of electron donors, are important intermediates 
in the aerobic release of iron from ferritin by ascorbic 
acid [32]. Ferrous ascorbate is a strong pro-oxidant that 
forms the paramagnetic nitrosocorbyl ascorbyl com-
plex Fe-AA-NO with nitric oxide, and the nitrosocorbyl 
ascorbyl complex may also be an nitric oxide-containing 
factor involved in vasodilation [33]. Naito et al. [34]. con-
structed a new model of gastric ulcers by local injection 
of ferrous and ascorbic acid solutions (Fe/ASA) into the 
gastric wall to cause ulceration, demonstrating that lipid 
peroxidation mediated by superoxide radicals generated 
by the Fe/ASA system played an important role in ulcer 
development. Hyperglycaemia increases oxidative stress 

Fig. 6  Association between DR vitreous fluid metabolites and systemic metabolic abnormalities. Models were adjusted for age, sex, BMI, insulin ther-
apy, and metformin therapy as cofactors. Error bar: 95% confidence interval. *Indicates p < 0.05, **indicates p < 0.01. BMI, body mass index; DR, diabetic 
retinopathy
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through the overproduction of superoxide in the mito-
chondrial electron transport chain [35], leading to devel-
opment of diabetic vascular complications, including DR 
[36]. The retina itself is very sensitive to oxidative stress 
due to the constant attack of ROS-producing ultraviolet 
light and high-energy visible light and the large amount 
of polyunsaturated fatty acids in the outer segments of 
the optic rod cells of the retina, which are prone to lipid 
peroxidation [37]. These events suggest that ferrous 
ascorbate may play a role in oxidative stress and could be 
a potential biomarker and new therapeutic target for DR. 
The role of ferrous ascorbate in the development of DR 
requires further investigation.

No studies have been conducted to investigate the 
effect of the potential joint action of the lens, corneal 
endothelial cells, etc., on the metabolic environment of 
the DR vitreous fluid. Based on the available literature, 
the evidence on whether DR and its severity affect cor-
neal endothelial indices is inconsistent [6, 38, 39]. Stud-
ies on the correlation between DR severity and corneal 
endothelial parameters are limited [38]. This discrep-
ancy may be related to the type, severity, and duration 
of diabetes or the type and severity of DR [40]. Metabo-
lites were affected by the lens and partially originated 
from circulating plasma before filtration by the ciliary 
body. There have been no studies related to the meta-
bolic environment of lens metabolites for vitreous fluid. 
In our study, there was no significant difference in the 
ocular status of the IOLs in the experimental and control 
groups, so the lens status did not influence the results in 
this study. Further experiments are still needed to deter-
mine the joint influence of the lens, corneal endothelial 
cells, and other potential factors on the metabolic envi-
ronment of the DR vitreous fluid.

In conclusion, we identified 20 differential metabolites 
through metabolomic analysis of vitreous fluid from 85 
patients with DR and 40 patients without diabetes. Sub-
sequently, a model for DR risk assessment was developed 
based on the nine metabolites with the most significant 
differences. Our findings suggest that such risk scores, 
based on molecular profiles, could aid in early disease 
detection and clinical diagnosis. Notably, ferrous ascor-
bate, phenylalanylglycine, and tetrahydroaldosterone-
3-glucuronide may be potential biomarkers of DR, 
correlating with poorer glycaemic control. Ferrous ascor-
bate is a metabolite marker that has not been previously 
reported to be associated with diabetes mellitus or DR 
and may be a new target for DR treatment.

Limitations
The small sample size may have affected the robustness 
of the study model. These findings should be corrobo-
rated by metabolomic analyses with a larger cohort of 
patients. Furthermore, the sensitivity and specificity of 

the diagnostic model should be assessed in a larger pro-
spective cohort. As vitreous humour necessitates surgi-
cal extraction, only patients undergoing vitrectomy were 
included. Previous metabolomic analyses used non-dia-
betes patients as controls, as diabetic patients without 
DR typically do not require surgery. Consequently, fur-
ther research with animal models is needed to delineate 
diabetes’ individual metabolic effects.

Conclusions
We identified 20 differential metabolites by metabolo-
mic analysis of the vitreous humour of patients with DR 
and healthy controls and developed a model for DR risk 
assessment based on the nine most significantly differ-
ent metabolites. Ferrous ascorbate, phenylalanylglycine, 
and tetrahydroaldosterone-3-glucuronide are potential 
biomarkers of DR and are associated with poor glycaemic 
control. Ferrous ascorbate was identified for the first time 
as a novel metabolite marker with no previous associa-
tion with diabetes or DR. Further studies are needed to 
validate these findings and identify longitudinal associa-
tions with the disease.
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