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has been linked to the development of secondary inflam-
mation, termed immune related adverse events (irAEs), 
including uveitis. [2, 4, 5]

Uveitis is a multifaceted ocular inflammatory disease, 
involving a complex network of molecular signaling path-
ways. Cytokines are pivotal mediators of inflammation 
and assume a central role in orchestrating the immune 
response within the ocular microenvironment. Infection, 
injury, or autoimmune/inflammatory diseases and drug-
induced inflammation can lead to uveitis. Key cytokines 
associated in uveitis include interleukins (IL), specifically 
IL-6 and IL-17, tumor necrosis factor alpha (TNF-α), 
and interferon gamma (IFN-γ), each exhibiting distinct 
effects on the pathogenesis of uveitis. [6–9]

This review focuses on the role of cytokines in uveitis, 
with an emphasis on uveitis induced by immune check-
point inhibitors. Understanding the cytokine profiles 
associated with ICI-induced uveitis not only provides 

Introduction
Immune checkpoint inhibitors (ICI) have revolution-
ized cancer treatment by facilitating the immune sys-
tem’s ability to target malignant cells. [1, 2] Inhibition 
of immune checkpoints such as Programmed cell Death 
protein 1 (PD-1) and Cytotoxic T Lymphocyte Antigen-4 
(CTLA-4) increase immune recognition in melanoma, 
lung cancer, and some lymphomas. [3] However, their use 
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Abstract
Immune checkpoint inhibitors (ICI) such as Programmed cell Death 1 (PD-1) inhibitors have improved cancer 
treatment by enhancing the immune system’s ability to target malignant cells. Their use is associated with 
immune-related adverse events (irAEs), including uveitis. The profile of pro-inflammatory cytokines underlying Anti-
PD-1-induced uveitis shares significant overlap with that of non-infectious uveitis. Current corticosteroid treatments 
for uveitis while effective are fraught with vision threatening side effects. The cytokine profile in ICI-related uveitis 
has a large overlap with that of noninfectious uveitis, this overlap strongly supports the potential for therapy that 
activates the PD-1 axis in the eye to treat uveitis. Indeed, ICI related uveitis often resolves with cessation of the ICI, 
restoring the endogenous PD-1 axis. The potential benefit of targeting many pro-inflammatory cytokines via local 
PD-1 axis activation is mitigating ocular inflammation while minimizing adverse effects.
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insights into the mechanisms of this adverse event but 
also sheds light on potential unique therapeutic strategies 
applicable to multiple etiologies of uveitis.

ICI Therapy and irAEs
Immune checkpoints are components of regulatory 
pathways in the immune system that help to maintain 
self-tolerance, averting autoimmunity. The interaction 
between immune checkpoint ligands on host cells and 
the receptors expressed on T Cells prevents the immune 
cell from entering an active state to mount an immune 
response against the host cell. [1] The PD-1 axis is an 
excellent example of immune cell regulation. PD-1 is a 
surface expressed receptor found on T cells, B cells, den-
dritic and NK cells. [10–12] Its ligand, Programmed cell 
death ligand 1 (PD-L1), is expressed in numerous cell 
types located throughout target tissues including vascu-
lar endothelial cells, mesenchymal stem cells, pancreatic 
islets, neurons, keratinocytes, placental tissue. Germane 
to this review is the presence of PD-L1 on corneal epi-
thelial cells and retinal pigmented epithelial cells . [10, 
13–16] When a T Cell major histocompatibility com-
plex (MHC) binds to a host antigen in peripheral tissue, 
the presentation of PD-L1 on the host binds the PD-1 
receptor, resulting in a differentiation into a regulatory 
T cell (Treg), a cell line responsible for promoting self-
tolerance, or induction of a state of anergy (“exhaustion”) 
whereby it cannot be stimulated to proliferate nor mount 
an inflammatory response. [11, 17] Notably, some cancers 
are able to exploit the PD-1/PD-L1 system by expressing 
PD-L1 on the cell surface or even secrete soluble PD-L1 
to elude the host immune system. By way of comparison, 
the CTLA-4 receptor-ligand interaction occurs primar-
ily in secondary lymphoid organs, representing an earlier 
stage of T cell activation. [18]

Immune checkpoint inhibitor therapy has been effec-
tive in treating a growing number of malignancies by 

counteracting the evasion of cancers from host immune 
surveillance. [10–12] ICIs are monoclonal antibodies 
that directly interrupt the interaction between PD-1 and 
PD-L1, enabling the immune system to act against tumor 
cells expressing immune checkpoint ligands on the cell 
surface. (Fig. 1) ICI therapy is effective against a myriad 
of cancers and is a powerful tool against cancers that are 
resistant to the typical first line chemotherapies. Numer-
ous monoclonal antibodies have been FDA approved 
for treatment of metastatic melanoma, small cell lung 
cancer, renal cell carcinoma and others. [3] Approved 

Fig. 2  The cytokines associated with immune-related adverse events 
(irAEs) vary significantly depending on the specific type of cancer being 
treated. This Venn diagram illustrates the distinct cytokine profiles ob-
served across different cancer types in response to Anti-PD-1 Immune 
Checkpoint Inhibitors. The limited overlap between cytokine signatures 
underscores the unique immunological landscapes associated with each 
cancer

 

Fig. 1  The PD-1 receptor-ligand interaction prevents T Cell activation. ICI prevent this interaction which leads to activation of T Cells. Original Image
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anti-PD-1 monoclonal antibody (mAb) therapies include 
pembrolizumab (Keytruda), Nivolumab (Opdivo), and 
Cemiplimab-rwlc (Libtayo). [3] Anti-PD-L1 mAb thera-
pies include Atezolizumab (Tecentriq), Durvalumab 
(Imfinzi), and Avelumab (Bavencio). [3]

The unfortunate but expected effect of inhibiting the 
immune checkpoint system is a reduction of self-toler-
ance and a rise in autoimmune activity by T Cells, which 
are clinically responsible for inflammatory and autoim-
mune disease states. Neuropathies, anemias, throm-
bocytopenia, autoimmune pancreatitis, and uveitis are 
immune-related adverse events (irAEs) associated with 
ICI therapy.

The manifestation of robust anti-self activity is a spe-
cific indication of cytotoxicity of neoplastic cell therapy. 
A decrease in self-tolerance, which is often detectable 
clinically, may provide a surrogate indicator of the effi-
cacy of the ICI therapy and response to tumor cell rec-
ognition. Thus, the presence and level of activity of irAEs 
provides a proxy for the effectiveness of the antitumor 
therapy. Recently, studies have consistently demonstrated 
improved survival outcomes as patients experience an 
increasing number of irAEs. [1, 19, 20] The presenta-
tion of irAEs are variable, ranging from a mild dermati-
tis to life threatening heart failure. [19, 21] Ocular irAEs 
include dry eye, corneal decompensation, uveitis, ocular 
myasthenia, and optic neuropathy . [22–24] Recent lit-
erature has identified paraneoplastic forms of carcinoma 
associated retinopathy (CAR), melanoma associated 
retinopathy (MAR) and Acute Exudative Polymorphous 
Vitelliform Maculopathy (pAEPVM) in association with 
CTLA-4 and PD-1 inhibition. [25–28] Cases of pre-exist-
ing paraneoplastic retinopathies have been shown to rap-
idly worsen after PD-1 inhibition. [29, 30] While irAEs 
may be an encouraging sign for cancer treatment, they 
can be associated with significant morbidity and require 
discontinuation of therapy or treatment with systemic 
steroids. Though the cause of the irAE is often the block-
age of a single receptor-ligand interaction (i.e., PD-1), 
treatment for irAEs is more complex and requires broad 
suppression of inflammation through systemic steroids 
or targeted cytokine therapy.

In particular, the etiology of ICI-Related uveitis is 
incompletely understood. Retinal pigment epithelial 
(RPE) cells natively express high levels of PD-L1, con-
tributing to the immune privileged status of the eye and 
thus are an important barrier to autoimmunity. The 
mechanism of ICI-Related uveitis may be attributed to 
the reduction of self-tolerance. [15, 31] ICI related uve-
itis is relatively rare, occurring at a rate of 1% of patients 
treated on ICI over one-year. [22] Combined therapy with 
multiple ICIs, female gender, and metastatic melanoma 
may confer increased risk of uveitis. [2, 22] The uveitis is 
typically mild, presenting with mild to moderate anterior 

chamber inflammation and light sensitivity, often solely 
requiring corticosteroid therapy for resolution. [2, 4, 32, 
33] Severe cases, however, can be vision threatening. As 
a specific example, the treatment of melanoma with ICI 
therapy can trigger a cross reactivity of normal choroidal 
melanocytes and malignant melanoma cells, resulting in 
a Vogt-Koyanagi-Harada (VKH)-like panuveitis that fre-
quently requires the stoppage of the inciting ICI. [4] This 
heterologous immunity has been observed in ICI treat-
ment of cutaneous, subcutaneous and uveal metastatic 
melanomas. [22, 34, 35] ICI related uveitis can be treated 
as idiopathic uveitis with topical, oral, intravitreal, or 
intravenous (IV) steroids. Though these treatments are 
often effective in achieving quiescence, among their 
numerous side effects are the acceleration of cataracts, 
elevated intraocular pressure, and glaucoma. [36, 37]

Cytokines and irAEs
The mechanism underlying irAEs is a cytokine dysregu-
lation triggered by loss of self-tolerance. Several stud-
ies have investigated the cytokine profile in patients 
experiencing irAEs and found that the medley of cyto-
kines implicated varies depending on the offending 
cancer type. A majority of studies have been reported 
on patients with metastatic melanoma treated with 
ICI therapy. A recent study of 98 such patients, treated 
either with anti-PD-1 monotherapy, nivolumab or pem-
brolizumab, or in combination with anti-CTLA-4 ther-
apy, ipilimumab, were assessed longitudinally for severe 
irAEs with cytokine bioassays. [38] In this study, 11 cyto-
kines were elevated in metastatic melanoma patients 
with severe irAEs: Fractalkine, fibroblast growth factor 
2 (FGF-2), interferon alpha 2 (IFN-α2), IL-12p70, IL-1a, 
IL-1B, IL-1RA, IL-2, and IL-13, granulocyte colony stim-
ulating factor (G-CSF), granulocyte-macrophage col-
ony-stimulating factor (GM-CSF). [38] Importantly, the 
anti-tumor efficacy of ICI therapy did not correlate with 
cytokine expression, suggesting that disruption of one or 
more of these cytokines may not impact ICI functional-
ity. For patients treated with anti-PD-1 monotherapy, 
there was an association between treatment success and 
serum levels of IL-2, interferon gamma-induced protein 
10 (IP-10, also known as C-X-C motif chemokine ligand 
10 (CXCL 10)), and monocyte chemoattractant protein 4 
(MCP-4, also known as chemokine ligand 13 (CCL13)). 
[38, 39]

ICI therapy is also widely used in small cell lung can-
cer. Recent studies assessing serum cytokine levels have 
implicated different cytokine profiles for irAEs in the 
setting of anti-PD-1 or anti-PD-L1 therapy for small cell 
lung cancer. A 2022 study found that after controlling for 
age, sex, pathological type and PD-L1 expression status, 
elevated IL-5, IFN-α, and IFN-γ were associated with a 
higher risk of irAEs. [40] A follow up 2023 study added to 
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this list an array of cytokines including IL-1β, IL-2, IL-6, 
IL-8, IL-12, IL-17, IFN-α, IFN-γ, and TNF-α. [41] This 
study also found reduced clinical benefit of ICI treatment 
in patients who developed elevated serum IL-8. [41]

Targeting the PD-1 receptor has also shown encour-
aging results in the treatment of renal cell carcinoma 
(RCC). [42, 43] As in the previous example, the cytokine 
profile associated with irAEs in this cohort is somewhat 
unique; elevated levels of IP-10/CXCL10 is associated 
with the development of irAEs in patients with RCC 
undergoing combination or monotherapy with ICI. 
[44] The exact patient cohort was also tested for the pre 
and post treatment levels of cytokines associated with 
irAEs in lung cancer and melanoma, including IL-17 A, 
IL‐1β,IL‐6, IL‐8, monocyte chemoattractant protein 1 
(MCP‐1), also known as chemokine ligand 2 (CCL2), and 
TNF-α. Paradoxically, no significant increases in these 
levels were detected. Additionally, IL-8, associated with 
both irAE development and reduced efficacy of ICI treat-
ment for small cell lung cancer, was undetectable in this 
patient cohort with renal cell carcinoma, further con-
firming the difficulty in targeting cytokines for treatment 
of irAEs. [44]

The degree of morbidity of irAEs can be quite signifi-
cant, requiring changing or discontinuation of ICI ther-
apy, there exists a need to select a target to prevent or 
treat irAEs in this vulnerable patient population. How-
ever, these studies highlight the idiosyncratic nature of 
the immune system’s response to “releasing the brakes” in 
the setting of malignancy, making target selection more 
difficult (Fig. 2).

Cytokines in uveitis
Noninfectious uveitis is an autoimmune or immune-
mediated disease. Noninfectious uveitis can be associated 
with underlying systemic disease, such as sarcoidosis, or 
present without underlying disease, such as serpiginous 
choroiditis. Underpinning these etiologies is the activa-
tion of the host immune system resulting in damage to 
the eye. The pathophysiology of noninfectious uveitis is 
may be akin to that seen in irAE in patients receiving ICI 
therapy. [5, 45] Research into the pathogenesis and treat-
ment of noninfectious uveitis offers us some insight into 
the cytokine dysregulation seen in irAEs.

Studies of serum cytokine levels in patients with non-
infectious uveitis have consistently identified associations 
with elevated TNF-α, IL-6, IFN-γ and IL-17  A. [6–8, 
46–50] The list of cytokines is likely much longer, includ-
ing IL-8, IL-12, G-CSF, GM-CSF, MCP-1, IP-10, TNF-α 
and VEGF. [9] Typical treatment for uveitis involves local 
or systemic corticosteroid therapy to dampen the host 
immune response, with escalation to immunomodula-
tory therapy if the widespread immunosuppression of 
corticosteroid therapy is prolonged. Biologics targeting 

individual cytokines can also give excellent control of 
uveitis.

IL-6 is a major player in uveitis, the presence of IL-6 
receptors on retinal vascular endothelial cells suggests 
that elevated serum levels of this cytokine can produce 
significant visual morbidity. [51] The STOP-Uveitis ran-
domized clinical trial compared two strengths of an 
anti-IL-6R antibody, tocilizumab, in patients with non-
infectious uveitis. This therapy demonstrated improve-
ment in incidence and severity of ocular and systemic 
disease in both groups. [52] Anti-IL-6R therapy has also 
demonstrated benefit in treating chronic or refractory 
non-infectious uveitis. [53] Tocilizumab, used to quell 
non-infectious uveitis, has also shown benefit in treating 
or preventing irAEs in the setting of anti-PD-1 therapy. 
[54–56] Given these encouraging results from systemic 
therapy, local ocular treatment with intravitreal injec-
tions of IL-6 antibody has also been explored in mouse 
models. [57]

In addition, IL-17 A has also been implicated in uveitis. 
Research concerning both infectious and non-infectious 
uveitis has shown that serum IL-17 A levels are markedly 
elevated compared to controls, suggesting its involve-
ment in ocular inflammation. [47] Additionally, IL-17 A 
contributes to macular edema by damaging the blood-
retinal barrier through JAK1 signaling. [58] Studies on 
anti-IL-17 treatments in rat models have demonstrated 
potential in reducing uveitic inflammation, resulting in 
milder symptoms, delayed onset, and faster resolution. 
[59] Although IL-17 blockade did not completely pre-
vent experimental autoimmune uveoretinitis (EAU), it 
reduced the presence of Th17 cells and decreased inflam-
mation markers IL-6 and TNF. [59] Moreover, in mouse 
models of noninfectious uveitis, intraperitoneal injec-
tions of anti-IL-17  A caused a significant reduction in 
anterior and posterior uveitis, including a complete ces-
sation of vasculitis. [59, 60] While these findings support 
the potential of IL-17 as a therapeutic target, systemic 
treatment with the human monoclonal antibody for 
IL-17 A, secukinumab (COSENTYX), has shown mixed 
results. Three phase III clinical trials treated used sub-
cutaneous secukinumab as adjunctive therapy for recur-
rent non-infectious uveitis and did not find a statistically 
significant difference in rates of recurrence compared to 
placebo. [61] In a phase II clinical trial, Administration 
of IV secukinumab in chronic non-infectious uveitis was 
found to have higher response rates, faster response and 
greater rates of remission than subcutaneous administra-
tion. [62]

Notably, the TNF-α and TNF-α receptors are known 
mediators of ocular inflammation. In an experimental 
mouse model, TNF-α administration induced an autoim-
mune posterior uveitis [63] and there is a reciprocal atten-
uation of experimental autoimmune uveoretinitis (EAU) 
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in mice treated with anti-TNFα therapy. [64] Moreover, 
samples of aqueous humor have been reported to have 
higher levels of TNF-α in patients with active nonin-
fectious uveitis. [65] Patients with uveitis secondary to 
Behçet’s disease have higher serum levels of both serum 
TNFα and a soluble form of its receptor, tumor necro-
sis factor receptor 2 (TNF-R2), the latter thought to be a 
response to elevated TNFα. Aqueous samples of patients 
with active uveitis also contain elevated levels of soluble 
TNF-R. [49, 63] Targeting the TNF-α receptor and ligand 
are effective in treating non-infectious uveitis secondary 
to Behçet’s, sarcoidosis, birdshot chorioretinopathy, and 
numerous other etiologies. [66, 67] Indeed, etanercept, 
a synthesized TNF-R2 receptor linked to the Fc portion 
of an IgG1 antibody, has also shown success in the treat-
ment of pediatric uveitis in patients with Juvenile Idio-
pathic Arthritis (JIA). [68]

Finally, while it is one of the most frequently identified 
cytokines identified in the serum of patients with active 
uveitis, IFN-γ has a complex and nuanced role in causing 
ocular inflammation. The response of the immune system 
to IFN-γ is sometimes contradictory, studies have shown 
both pro [69–71] and anti-inflammatory effects. [72, 73] 
For example, IFN-γ has a bidirectional effect on T helper 
cell 17 (Th17) pathogenicity depending on the stage of the 
disease process. [74] Despite this, targeting the cytokine 
has been shown to reduce inflammation; a mouse model 
demonstrated that anti-IFN-γ treatment introduced at 
initial stages of uveitis is protective, attenuating the dis-
ease process. During active or ongoing phases of uveitis 
however, IFN-γ inhibits effector Th17 cell responses. [74] 
Conversely, the endogenous development of anti-IFN-γ 
antibodies is associated with immunodeficiency that 

is particularly challenging to treat. [75] It appears likely 
that addressing elevated IFN-γ in the treatment of uveitis 
involves a restoration to homeostasis rather than wide 
spread suppression or elevation.

Figure  3 highlights that while targeting each of these 
cytokines can be effective, there is no panacea; patients 
requiring systemic immunomodulatory therapy (IMT) 
may need to try several different therapies before achiev-
ing sufficient suppression of inflammation. In addition, 
the side effect profile is not insignificant and can require 
discontinuation of the therapy. These challenges could 
be potentially addressed by a local therapy that reduces 
activity of pro-inflammatory cytokines.

A PD-1 opportunity
The presence of uveitis in patients undergoing PD-1 inhi-
bition suggests a common link between noninfectious 
uveitis and irAE in the eye. As demonstrated in Fig.  4, 
there is significant overlap between cytokines responsible 

Fig. 4  The cytokine profiles elevated in Non-Infectious Uveitis and Anti-
PD-1 irAE Uveitis demonstrate a notable degree of overlap

 

Fig. 3  PD-1 blockade, through the use of PD-1 or PD-L1 mAbs, can trigger immune related adverse events (irAEs) through the release of proinflammatory 
cytokines (a). In the eye, elevation of this set of cytokines presents as intraocular inflammation (b) Inflammation secondary to cytokine release is treated 
with targeted therapy, typically with reduction of a single cytokine (c)
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for non-infectious uveitis and those elevated in anti-PD-1 
associated irAEs. [55, 61, 76–85] Notably, 10 of the 12 
cytokines associated with uveitis are also elevated in the 
setting of anti-PD-1 therapy. The large overlap in cyto-
kine profile suggests that the PD-1 axis may play a role 
in the development and propagation of uveitis. Targeting 
individual cytokines from this cytokine profile (Fig.  4) 
such as IL-6 has also been shown to reduce inflammation. 
For instance, tocilizumab reduces levels of IL-6, etaner-
cept reduces levels of TNF-α, and secukinumab reduces 
IL-17. Direct agonism of the PD-1 axis could potentially 
achieve this same reduction in pro-inflammatory cyto-
kines with the additional benefit of reducing all the other 
cytokines whose elevation is associated with irAE uveitis.

Thus, if blocking the PD-1 axis causes a sufficient eleva-
tion in proinflammatory cytokines to cause uveitis, it is 
possible that systemic or even local agonism of that axis 
would normalize the levels of these inflammatory cyto-
kines with resolution of uveitis. Therefore, in uveitis not 
caused by anti-PD-1 therapy, locally fortifying the PD-1 
axis may cause analogous reduction of the implicated 
cytokines, as demonstrated in Fig. 5.

Corticosteroid is an imperfect treatment for uveitis
Corticosteroid therapies are effectively the standard of 
care for all types of ocular inflammation, representing 
one out of every four eye drop prescriptions in the United 
States. [86] Steroids form the foundation of the treatment 
of uveitis and are given in every manner conceivable: top-
ical, peribulbar, intracameral, subconjunctival, sub-Ten-
on’s, suprachoroidal, intravitreal, retrobulbar and oral. 
The anti-inflammatory effect of steroids is achieved at the 

transcriptional level. The cholesterol-rich chemical struc-
ture of steroids enables transition through the cell mem-
brane, to reach the nucleus where interaction with the 
glucocorticoid receptor is achieved. The glucocorticoid 
receptor has a robust effect on DNA transcription affect-
ing a multitude of pathways; one of the most significant 
being the inhibition of the proinflammatory nuclear fac-
tor kappa B (NF-kB) transcription factor. Steroids cause a 
deacetylation of histones activated by NF-kB, closing off 
the DNA primers responsible for promoting transcrip-
tion of inflammatory cytokines. [87] Specifically, inhibi-
tion of NF-kB by steroids blocks induction of the genes 
for IFN-γ, [88] TNF-α, IL-1β, IL-6, IL-8, IL-12p40, [89] 
IL-17, [90] among many others. The blockade of these 
cytokines, implicated in uveitis, establishes the critical 
role steroids play in the current anti-inflammatory treat-
ment paradigm.

However, the direct access to nuclear activity also 
results in undesirable effects in the eye. While virtu-
ally every orbital or periorbital tissue can be negatively 
impacted by the use of steroids, the most common 
adverse effects are ocular hypertension and cataract, 
occurring in greater than 10% of treated patients. [37]

Steroid-induced elevation in intraocular pressure (IOP) 
is a common and particularly pernicious side effect of 
steroid treatment, up to 36% of the general population 
has an increase of 5 mm Hg or more in response to topi-
cal steroid treatment. This percentage increases to up to 
92% of those with a history of primary open angle glau-
coma (POAG). [91–94] Because uveitis often requires 
sustained immunosuppression, patients may need steroid 
treatment for long periods of time further increasing the 

Fig. 5  PD-1 blockade, through the use of PD-1 or PD-L1 mAbs, can trigger immune related adverse events (irAEs) through the release of proinflamma-
tory cytokines (a). In the eye, elevation of this set of cytokines presents as intraocular inflammation (b), with anterior, intermediate, posterior uveitis or 
any combination thereof. Intravitreal delivery of PD-1 agonist (c) could restore the PD-1 axis with a return of cytokines to homeostatic levels. With the 
abatement of inflammatory signaling, uveitis could in turn resolve (d)
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risk of pressure elevation coupled to inflammatory dam-
age of the trabecular meshwork. This results in damage 
to the optic nerve at a reported incidence of 8–35%.[95, 
[96]] These side effects can be an especially challenging 
problem in treating children with uveitis, who develop 
elevated IOP at a similar rate as adults [97] but require 
filtration surgery to control IOP at much higher rates, 
cited around 1/3 of all children with uveitis. [95, 97, 98] 
Among these children, vision threatening complications 
after filtration surgery occur at a rate of 10% over 5 years. 
[99]

Steroid-induced cataract progression is another chal-
lenging adverse effect in the uveitis population. Patients 
with uveitis have a baseline increased risk of cataract for-
mation that grows in a dose-dependent manner with use 
of topical steroids to 55%, with just twice per day admin-
istration. [100, 101] Over a 7 year period, any topical cor-
ticosteroid use is associated with three-times increased 
risk of cataract surgery. [101, 102] Patients with uveitis 
that undergo cataract surgery have worse postopera-
tive visual acuity, higher rates of glaucoma, higher rates 
of post-operative cystoid macular edema (CME), pos-
terior capsular opacification, recurrent inflammation 
and epiretinal membrane formation. [50, 100, 102–106] 
Because of the complexity of these cases, there is also an 
increased risk of intraocular lens (IOL) dislocation and 
decentration. [107, 108]

The adverse side effects of steroid treatment are sig-
nificant, and even patients on immunomodulatory ther-
apy often require intermittent steroid pulses to control 
the disease. Moreover, even when such side-effects are 
deemed clinically acceptable, patients with irAEs may 
be steroid refractory in 5–25% of cases [109–111] Thus, 
while the steroid immunosuppression can alter the dis-
ease course, it is not a proverbial off switch; but more 
akin to a carpet bomb that alters transcription with innu-
merable negative downstream effects. Optimal treat-
ment of uveitis focusing on a target which can restore the 
homeostasis of cytokines without damaging ocular struc-
tures is a clear unmet need.

PD-1 activation as steroid sparing therapy
Modulating the PD-1/PD-L1 axis may be the proverbial 
inflammatory off-switch needed for uveitis. The cyto-
kine profile in PD-1 blockade-related uveitis has a large 
overlap with that of noninfectious uveitis, this overlap 
strongly supports the potential for therapy that acti-
vates the PD-1 axis in the eye to treat uveitis. Indeed, ICI 
related uveitis often resolves with cessation of the ICI, 
restoring the endogenous PD-1 axis. Antibody medi-
ated paraneoplastic syndromes, such as MAR, CAR, 
pAEPVM, occurring after the initiation of PD-1 inhi-
bition have also been reported to slow or improve after 
cessation. Furthermore, patients with active uveitis have 

lower serum levels of PD-L1. [25, 112–117] Activation 
of PD-1 receptors with an intravitreal injection of PD-L1 
could cause an interruption of inflammatory cytokine 
release in the same way that host PD-L1 activates the 
previously blocked receptors after cessation of anti-PD-1 
therapy. Moreover, as the PD-1 receptor is only present 
on immune cells, PD-L1 delivered into the eye cannot 
interact with ocular tissues and would not cause cellular 
changes seen in corticosteroid therapy. In addition, while 
there may be a concern of T-cell anergy with PD-1 ago-
nism, the expression of PD-L1 by tumors did not result 
in higher rates of infections, particularly as compared 
to documented rates of infections with corticosteroids. 
[118]

Conclusion
This review has highlighted the critical role of cytokines 
in mediating immune responses in both uveitis and 
immune checkpoint inhibitor-induced uveitis. We have 
explored the limitations of current corticosteroid treat-
ments for uveitis and discussed the potential of PD-1 
agonism as a novel therapeutic strategy.

Cytokines, including IL-6, TNF-α, IFN-γ, and IL-17, 
play a central role in the pathogenesis of uveitis. The 
disruption of the PD-1 axis can trigger uveitis that is 
associated with these cytokines. While corticosteroids 
are effective in controlling uveitis, they come with sig-
nificant side effects, limiting their long-term use. On the 
other hand, local PD-1 activation within the eye may be 
a promising steroid-sparing approach to uveitis therapy. 
Confirmation of this hypothesis will require creative clin-
ical developments.
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