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Abstract 

Background Oculocutaneous albinism (OCA) is a genetically heterogeneous condition that is associated 
with reduced or absent melanin pigment in the skin, hair, and eyes, resulting in reduced vision, high sensitivity 
to light, and rapid and uncontrolled eye movements. To date, seventeen genes have been associated with OCA 
including syndromic and non-syndromic forms of the condition.

Methods Whole exome sequencing (WES) was performed to identify pathogenic variants in nine Pakistani families 
with OCA, with validation and segregation of candidate variants performed using Sanger sequencing. Furthermore, 
the pathogenicity of the identified variants was assessed using various in-silico tools and 3D protein structural analysis 
software.

Results WES identified biallelic variants in three genes explaining the OCA in these families, including four variants 
in TYR, three in OCA2, and two in HPS1, including two novel variants c.667C > T: p.(Gln223*) in TYR, and c.2009 T > C: 
p.(Leu670Pro) in HPS1.

Conclusions Overall, this study adds further knowledge of the genetic basis of OCA in Pakistani communities 
and facilitates improved management and counselling services for families suffering from severe genetic diseases 
in Pakistan.
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Background
Albinism is a complex group of rare genetic disorders 
characterized by abnormal melanin biosynthesis, result-
ing in complete or partial loss of pigment (pheomela-
nin or eumelanin) with the addition of reduced visual 
acuity, photophobia (sensitivity to light), and nystag-
mus (random eye movements) [1]. It is divided into two 
major categories: ocular albinism (OA; MIM 300500), 
characterised by hypopigmentation of the ocular tis-
sue, and oculocutaneous albinism (OCA; MIM 203100) 
(www. omim. org assessed on 30 January 2023) [2], which 
involves lack of pigmentation in the eyes, skin, and hair 
with nystagmus [3], misrouting of the optic nerves, foveal 
hypoplasia, and loss of vision. OCA is further classified 
into syndromic and non-syndromic forms. Non-syn-
dromic OCA is caused by mutations in genes involved 
in melanin biosynthesis and melanocyte differentiation, 
resulting in only hypopigmentation and visual abnor-
malities [4]. Currently, seven genes (TYR, OCA2, TYRP1, 
SLC45A2, SLC24A5, LRMDA,  and  DCT) [5] linked to 
eight different types (OCA1-8) of non-syndromic OCA 
have been reported, with OCA1 being the most com-
mon, accounting for 50% of all cases reported worldwide 
associated with TYR  gene variants [6]. Syndromic forms 
of OCA are associated with genes encoding proteins 
involved in the regulation of intercellular transport of 
molecules and the generation of lysosome-related orga-
nelles (LROs). LROs are specific to certain cell types, 
such as lytic granules in CD8 + T-cells and melanosomes 
in melanocytes. Disruption of this pathway can result in 
immunodeficiency, bleeding diathesis, and pulmonary 
fibrosis, as well as prominent OCA phenotypes such as 
hypopigmentation in the skin, eyes, and hair [7, 8]. Fur-
thermore, syndromic OCA may include additional sys-
temic changes. Hermansky-Pudlak syndrome (HPS; 
MIM 203300) and Chediak-Higashi syndrome (CHS; 
MIM 214500) are the two most common types of syn-
dromic OCA. HPS is associated with mutations in genes 
involved in the formation of protein complexes (BLOC-
1, BLOC-2, BLOC-3, or AP-3) and take part in biogen-
esis of specialized organelles such as melanosomes [9], 
whereas CHS is linked to mutations in the  LYST  gene 
located at  1q42-q43 and encodes a vascular transport 
protein whose function has not yet been fully deline-
ated [10]. Clinical features of HPS generally include OCA 
with associated haematological problems (epistaxis, 
bleeding diathesis, menorrhagia, colonic and gingival 
bleeding and prolonged bleeding after surgery/trauma 
or postpartum hemorrhage), gastrointestinal anomalies 
(cramps, abdominal pain, enterocolitis, malabsorption, 
and diarrhoea), and respiratory issues (recurrent infec-
tion, exertional dyspnea, non-productive cough, pulmo-
nary fibrosis, and hypoxia) [11]. To date, 11 HPS subtypes 

associated with 11 different genes have been described in 
the literature. Both syndromic and non-syndromic OCA 
are inherited in an autosomal recessive pattern and have 
a global prevalence that ranges from 1: 17,000 to 20,000, 
with nearly one in every 70 individuals being a carrier 
[12, 13]. However, prevalence varies based on OCA type, 
ethnicity, and distinct founder mutations present in spe-
cific populations.

This study details the molecular genetic analysis of nine 
consanguineous Pakistani families from different ethnic 
backgrounds with OCA and signs of nystagmus. Whole 
exome sequencing (WES) identified nine pathogenic var-
iants in three protein-coding genes, including two novel 
variants in the TYR  and HPS1 genes.

Methods
Ethical Approval
This study was approved by the International Islamic 
University’s Institutional Review Board (IRB) in Islama-
bad, Pakistan (Letter No. IIU(BI&BT)/FBAS/2018/3598) 
and was carried out in accordance with the principles 
outlined in the Declaration of Helsinki. All participants 
in the study and/or their legal guardians provided writ-
ten informed consent for clinical and research data to be 
published in a peer-reviewed journal. Nine affected fami-
lies representing various ethnic groups were enrolled in 
this study from the Khyber Pakhtunkhwa (KPK) prov-
ince of Pakistan. The clinical history of each family was 
recorded, and initial examination revealed the pres-
ence of OCA. Blood samples were collected from both 
affected and unaffected family members including their 
parents.

Clinical Examination
On initial analysis, complete family history and clinical 
information were obtained through questionnaire. The 
guardians of each of the families were interviewed about 
the onset of disease and all other related information. 
Pedigrees were constructed from information provided 
by the family using Cyrillic 2.0 software, according to the 
standard protocol defined by Bennett et  al. (1995) [14]. 
After data collection, a detailed clinical evaluation was 
performed by a physician at the local district hospital for 
all affected and selected unaffected individuals from each 
of the nine families involved in the study to confirm their 
disease status. Colour vision analysis (Ishihara charts), 
visual acuity assessment (Snellen charts), photophobia, 
and fundoscopic examination by direct ophthalmos-
copy were evaluated in affected individuals. Additionally, 
affected individuals were examined and assessed for pig-
ment abnormalities in the skin, eyes, and hair to identify 
possible syndromic conditions associated with OCA.

http://www.omim.org
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Molecular genetic study
DNA was extracted from blood samples using an in-
organic (salting out) protocol [15], carried out step by 
step at room temperature. Chemicals and reagents were 
kept at -4  °C and tightly sealed to avoid contamination. 
The NanoDrop™ spectrophotometer was used to deter-
mine the concentration and purity of the extracted DNA 
samples (Thermo Fisher Scientific, Dover, DE, USA).

WES was performed using an Illumina HiSeq™ 2000 
sequencer on DNA from a single affected member from 
each of the nine families (Illumina Inc., San Diego, CA, 
USA). For exome enrichment, 51 Mb Agilent Sure Select 
Human All ExonV4 enrichment kit was used along 
with read alignment Burrows–Wheeler Aligner (BWA-
MEM, v0.7.17) [16], InDel realignment, base quality 
recalibration Genome Analysis Tool Kit (GATK, v3.7.0) 
[17], SNVs/InDels (GATK/Haplotype Caller), duplicates 
removed and mate-pairs fixed using Picard (v2.15.0) 
(http:// broad insti tute. github. io/ picard/) and DNAnexus 
for annotation and variant calling (DNAnexus Inc., 
CA, USA: https:// dnane xus. com/). Variant Call Format 
(VCF) files including all gene variations were gener-
ated using Haplotype Caller. Homozygosity was mapped 
using HomozygosityMapper [18]. The gnomAD database 
(https:// gnomad. broad insti tute. org/) was used to detect 
allele frequencies, and GERP was used to conserve vari-
ants [19]. To identify candidate genes, single nucleotide 
polymorphisms (SNPs) with Minor Allele Frequency 
(MAF) (>0.05) were removed, along with non-splicing 
junctions containing synonymous and intronic variants 
found in the 1000 Genomes Project (www. 1000g enomes. 
org) [20] or the Single Nucleotide Polymorphism Data-
base (dbSNP; NCBI).

Primers were designed using Primer3 software v0.4.0 
(http:// frodo. wi. mit. edu/ prime r3/) for all coding exons and 
associated intron–exon junctions of the TYR  (NM_000372.5), 
OCA2 (NM_000275.3), and HPS1 (NM_000195.5) genes. To 
confirm co-segregation of the genetic variants identified by 
WES, PCR amplicons were generated in the Bio-Rad T100™ 
thermal cycler (Bio-Rad Laboratories, Hercules, CA, USA) 
using gene-specific primers (Supplementary Table 1) employ-
ing standard optimization procedures [21] and purified using 
the BIGDYE® XTerminator™ Purification Kit (ABI, Applied 
Biosystems, Waltham, MA, USA), with dideoxy sequenc-
ing of amplicons using an ABI 3730 DNA Analyzer (Thermo 
Fisher Scientific, Dover, DE, USA). Sequence reads were 
aligned to the human genome reference sequence [hg38] to 
identify base changes using BioEdit 7.0 (http:// www. mbio. 
ncsu. edu/ BioEd it/ bioed it. html), CLC sequence viewer 8.0 
(http:// www. clcbio. com/ produ cts/ clc- seque nce- viewer/) and 
chromatograms visualized with FinchTV v1.5.0 (https:// digit 
alwor ldbio logy. com/ Finch TV) software. Reference sequences 
for TYR , OCA2, and HPS1 genes and proteins were obtained 

from the Ensemble genome browser (GRCh38 assembly, 
Dec 2013) (http:// www. ensem bl. org/ Homo sapiens/Info/
Index?db = core). Variant and allele frequencies were identi-
fied in ClinVar, HumVar, dbSNP, gnomAD v3.1.2, and HGMD 
2022.1 online genomic databases, and the pathogenicity of 
TYR, OCA2, and HPS1 gene variants was determined using 
the ACMG/AMP [22] guidelines.

Bioinformatics analysis
In silico pathogenicity prediction tools were used to assess 
missense and splice variants including REVEL (rare exome 
variant ensemble learner) [23] scores taken from dbNSFP 
(v4.3 a) (http:// datab ase. liulab. scien ce/ dbNSF Pconn) [24], 
PredictSNP2 (https:// losch midt. chemi. muni. cz/ predi ctsnp2/) 
[25], Scale-Invariant Feature Transform (SIFT) (https:// sift. 
bii.a- star. edu. sg/) [26], Polymorphism phenotyping v2 (Poly-
Phen-2) (http:// genet ics. bwh. harva rd. edu/ pph2/) [27], Pro-
tein Variation Effect Analyzer (PROVEAN) (https:// www. 
jcvi. org/ resea rch/ prove an) [28], SpliceAI (https:// splic eailo 
okup. broad insti tute. org/) [29] and NNsplice (https:// www. 
fruit fly. org/ seq_ tools/ splice. html) [30].

Clustal Omega (https:// www. ebi. ac. uk/ Tools/ msa/ clust 
alo/) [31] was employed to show protein conservation 
across several species and for a three-dimensional (3D) 
structural analysis, the normal and mutant protein struc-
tures were generated using different protein prediction 
software’s such as AlphaFold (https:// alpha fold. ebi. ac. 
uk/) [32], SWISS-MODEL (https:// swiss model. expasy. 
org/) [33], Phyre2 v2.0 (http:// www. sbg. bio. ic. ac. uk/ 
~phyre2/) [34], and RoseTTAFold (https:// robet ta. baker 
lab. org/) [35]. Ramachandran plots were used to evalu-
ate the stereochemistry and validity of the constructed 
3D protein structures [36]. ERRAT [37], VERIFY 3D 
[38], WHATCHECK [39], and PROCHECK [36] evalua-
tion tools (https:// saves. mbi. ucla. edu/) were used for the 
assessment and verification of the predicted structures 
and then suitable structures were chosen based on their 
preferred regions and the ERRAT quality factor. Struc-
tures were analyzed using the Swiss-Pdb viewer (https:// 
spdbv. unil. ch/) [40] to check for variant effect on protein 
structure. Furthermore, structure refinement, energy 
minimization, and visualization were done by UCSF Chi-
mera 1.16 (http:// www. cgl. ucsf. edu/ chime ra) [41].

Results
Clinical description
Nine consanguineous Pakistani families with OCA were 
recruited from Pakistan’s KPK province. In all families, 
pedigree analysis revealed a recessive pattern of inherit-
ance (Fig. 1). All affected individuals from the nine fami-
lies showed signs of nystagmus and decreased visual acuity 
with depigmentation of the hair, eyes, and skin, whereas, 
the presence of photophobia, strabismus, colour blindness, 
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and foveal hypoplasia differed between individuals. In fam-
ilies PKNYS 08 and 09, additional symptoms of epistaxis, 
gingival bleeding, and bruising with severe and frequent 
respiratory infections were observed in affected individu-
als IV:1 from each family respectively, indicating the pres-
ence of a syndromic form of OCA (HPS). Detailed clinical 
evaluation is described in Table 1.

Genetic findings
Variants in TYR 
WES identified four pathogenic TYR  variants in fami-
lies PKNYS (01–04), including a novel nonsense variant  
[Chr11(GRCh38):g.89178620C > T; NM_000372.5: c.667C > T;  
p.(Gln223*)] in the first exon of TYR  in family PKNYS01, 
resulting in a premature termination codon (PTC) and trun-
cated protein predicted to undergo nonsense-mediated 
decay (NMD). The MAF for the variant is not indexed in 

gnomAD V3.1.2 and is listed as ‘pathogenic’ in ClinVar, how-
ever, there is no mention of zygosity. Furthermore, three 
previously reported [42–44] TYR  variants were identi-
fied including a missense mutation in exon one [Chr11 
(GRCh38):g.89178085  T > A; NM_000372.5: c.132  T > A; 
p.(Ser44Arg)] in family PKNYS02, a nonsense mutation  
[Chr11(GRCh38):g.89191214C > T; NM_000372.5: c.832C > T; 
p.(Arg278*)] in family PKNYS03, and compound het-
erozygous variants in family PKNYS04 [NM_000372.5: 
Chr11(GRCh38):g.89191215C > T; c.832C > T; p.(Arg278*); and  
Chr11(GRCh38):g.89284843G > A; c.1255G > A; p.(Gly419 
Arg)] in exons one and four respectively. All variants co-
segregated in families PKNYS 01–04 as expected for an 
autosomal recessive condition (see Fig. 1). All the identified 
variants were predicted to alter the function/expression of 
the TYR  gene (Table 2).

Fig. 1 Pedigrees of families. PKNYS (01–04) with OCA co-segregating for TYR  mutations, PKNYS (05–07) with OCA co-segregating for OCA2 
mutations, and families PKNYS (08,09) with OCA co-segregating for HPS1 mutations. “ + ” sign indicates wildtype allele whereas “-” sign indicates 
mutated allele. For compound heterozygous mutations, the different TYR  variants within the same family are displayed in different colours
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Variants in OCA2
WES identified two previously reported variants [12, 
45] in the OCA2 gene in families PKNYS (05–07). The 
frameshift variant [Chr15(GRCh38):g.28027977_28027978D
elTT; NM_000275.3: c.408_409delAA; p.(Arg137Ilefs*83)] 
located in exon four in family PKNYS05 and a splice site 
variant [Chr15(GRCh38):g.27990662A > C; NM_000275.3: 
c.1045-15 T > G; p.?] in families PKNYS 06 and 07 result-
ing in skipping of exon ten. All variants co-segregated as 
expected for an autosomal recessive condition in families 
PKNYS (05–07) (Fig. 1). The identified mutations are pre-
dicted to alter OCA2 expression in the affected individu-
als resulting in the disease phenotype.

Variants in HPS1
WES identified one novel and one previously reported muta-
tion in the HPS1 gene in families PKNYS 08 and 09. The 
novel missense variant [Chr10(GRCh38):g.98417658A > G; 
NM_000195.5: c.2009  T > C; p.(Leu670Pro)] was located 
in exon twenty of HPS1 in family PKNYS09. The MAF for 
the variant is not indexed in gnomAD V3.1.2 and is listed as 
‘likely pathogenic’ in ClinVar, however, no clinical details are 
provided. The previously reported [46] nonsense mutation 
[Chr10(GRCh38):g.98431282G > A; NM_000195.5: c.517C > T; 
p.(Arg173*)] in exon seven in family PKNYS08. Co-seg-
regation analysis in families PKNYS 08 and 09 revealed 
parents as heterozygous carriers and affected individuals 
as homozygous for these HPS1 variants as expected for an 
autosomal recessive condition (Fig. 1).

In‑Silico analysis
Various online tools were used to predict the pathogenic-
ity of identified missense variants, including REVEL 
score, PredictSNP2, SIFT, PolyPhen-2, and PROVEAN. 
SpliceAI and NNSPLICE were used to assess the effect of 
splice variants. Table 2 details the results of these patho-
genicity prediction tools alongside HGMD variant clas-
sification. SIFT, PolyPhen-2, PROVEAN, PredictSNP2, 
and Mutation Taster scores for the novel HPS1 variant 
(NM_000195.5: c.2009 T > C; p.(Leu670Pro)) were 0.000, 
0.998, -5.789, 1.000, and 0.999 respectively, and all pre-
dict the mutation to be deleterious.

Structural analysis
To investigate the effect and relationship between the 
wild-type (WT) and mutant protein structures for the 
novel TYR  and HPS1 variants, 3D-structural analysis was 
performed. It was predicted that the mutant TYR pro-
tein resulting from the nonsense variant (NM_000372.5: 
c.667C > T; p.Gln223*) would/may produce a truncated 
structure of only 222 amino acids in length (Fig. 2, Sup-
plementary Fig. 1), caused by a PTC as compared to the 

WT TYR protein comprising of 529 residues (Supple-
mentary Fig.  1). Furthermore, Ramachandran plots of 
the WT TYR protein revealed 88.3% and 10.9% residues 
in the favored and allowed regions, while the mutant 
TYR protein consisting of only 222 amino acids (less 
than half of WT) had 88.9% and 11.9% residues in the 
favored and allowed regions (Supplementary Fig.  1). 
WT and mutant TYR structures were further analyzed 
in Swiss-Pdb viewer. The p. Gln223* termination was in 
the intra-melanosome domain of the TYR protein and 
resulted in a truncated non-functional protein structure 
For the HPS1 protein (700 residues), the missense vari-
ant (NM_000195.5: c.2009 T > C) was predicted to cause 
a substitution of amino acid leucine to proline at posi-
tion 670 (Supplementary Fig.  2). The WT and mutant 
HPS1 proteins were superimposed for direct compari-
son revealing conformational changes and altered qua-
ternary structure of the mutant HPS1 protein (Fig.  3C, 
D). Additionally, Ramachandran plots for the WT HPS1 
protein showed 87.8% and 11.2% residues in the favored 
and allowed regions, whereas the mutant HPS1 protein 
had 87.6% and 11.9% residues in the favored and allowed 
regions (Supplementary Fig.  2. WT and mutant HPS1 
structures were then analyzed in Swiss-Pdb viewer. The 
p.Leu670Pro substitution was revealed to be located in 
C-terminal Fuz-longin-3 domain of the HPS1 protein, 
which takes part in Rab signalling (Figs. 3 and 4) by form-
ing a complex (BLOC-3) with HPS3. The substitution 
resulted in alteration of quaternary protein structure and 
predicted to disturb Rab signalling via BLOC-3. Overall, 
the reported pathogenic variants resulted in defective/
altered protein structures leading to the OCA phenotype 
in affected individuals.

Discussion
OCA is a clinically and genetically heterogeneous disor-
der that has been observed to segregate in an autosomal 
recessive pattern in humans [13]. This study identifies 
pathogenic variants in TYR , OCA2, and HPS1 genes in 
affected individuals from nine Pakistani families with 
OCA (Table 1) portraying a recessive form of inheritance 
in all cases (Fig. 1). A total of nine mutations were identi-
fied using WES, including two novel variants in the TYR  
and HPS1 genes (Table 2), moreover, in-silico analysis of 
altered amino acid sequences and 3D structural predic-
tion further support the pathogenicity of these variants 
(Figs. 2, 3, 4 and Supplementary Fig. 1,2).

The TYR  (NM_000372.5) gene located at chro-
mosome 11q14.3 consists of five exons encoding an 
enzyme 523 amino acid residues in length which cata-
lyzes the first two steps of the melanin biosynthesis 
pathway and involves oxidation and hydroxylation of 
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L-DOPA and DOPA quinone. The glycoprotein struc-
ture consists of four regions, a signal sequence (1-18), 
an intra-melanosomal domain (19-476) comprising of a 
copper binding site, a single α-helical trans-membrane 
domain (477-497), and a flexible C-terminal domain 
(498-529) [49]. To date, over 565 pathogenic variants 
have been reported in the TYR  gene (HGMD 2022.1) 
(Table 3) with over 90 mutations identified in the Paki-
stani population, accounting for 40% of OCA cases. 
Furthermore, the prevalence of TYR  allele in the Paki-
stani population accounts for about 37% [50]. In fami-
lies PKNYS (01–04) four mutations (three previously 

reported, one novel) were identified in the TYR  gene. 
Among the reported variants, c.132 T > A (p.Ser44Arg) 
has been previously described in three Pakistani fami-
lies and is more common in the South Asian popu-
lation according to gnomAD v2.1.2 MAF (0.0013), 
compared to other populations (African 0.0001249, 
and European 0.00002372) [51]. The TYR  variants 
(p.Gly419Arg) c.1255G > A and (p.Arg278*) c.832C > T 
are amongst the most frequently reported mutations 
in the Pakistani community occurring in 20 and 21 
families, respectively [5]. The reported nonsense/mis-
sense variants c.132  T > A, c.832C > T and c.1255G > A 

Fig. 2 Genetic analysis of family PKNYS01 with novel TYR  variant. A From top to bottom: chromatograms of unaffected wildtype individual (Top), 
unaffected heterozygous carrier (Centre), and affected individual homozygous for thymine at position c.667. B Normal TYR  structure consisting 
of five exons (1–5) which encode for the essential signal sequence, intra-melanosomal domain (consisting of epidermal growth factor (EGF)-like 
region and a Copper (Cu)-containing domains), and transmembrane-domain (Top); Mutated TYR  structure showing stop codon at position p. Gln 
223* in the intra-melanosomal domain along with scale for amino acid length (Bottom)



Page 9 of 12Khan et al. BMC Ophthalmology          (2024) 24:345  

(p.Ser44Arg, p.Arg278* and p.Gly419Arg) were found 
to be rare with MAF 0.0001, 0.0001, and 0.00006 world-
wide respectively [50] whereas, MAF for the novel TYR  
nonsense variant c.667C > T (p.Gln223*) was not listed 
in gnomAD v3.1.2. The c.667C > T; p.(Gln223*) variant 
is listed as pathogenic in ClinVar, although there are 
limited clinical details and no information on zygo-
sity. The variant results in a truncated non-functional 
structure occurring in the first exon encoding the intra-
melanosomal domain (IMD) (conserved region),which 
facilitate the enzymatic conversion of the amino acid 
tyrosine into melanin. The IMD of tyrosinase contains 
the active site of the enzyme, where it catalyzes two 
key reactions in the melanin synthesis pathway: (1) 
Hydroxylation of Tyrosine and (2) Oxidation of DOPA. 
These enzymatic reactions are crucial in melanin 

biosynthesis. Alterations in the IMD results in loss of 
TYR function leading to genetic conditions such as 
OCA [52] like in family PKNYS01. In families PKNYS 
(05–07) two previously reported mutations were identi-
fied in the OCA2 gene responsible for OCA type 2 (sec-
ond most prevalent form of OCA), which has a global 
prevalence of 1 in 36,000. The OCA2 (NM_000275.3) 
gene previously known as the ‘P’ gene is composed of 
23 exons and codes for a melanosomal transmembrane 
enzyme consisting of 838 residues (10 kDa) [53]. Until 
now, more than 431 mutations have been reported in 
the OCA2 gene (HGMD 2022.1) (Table 3), with a total 
of 59 variants reported in the Pakistani population in 

Fig. 3 Genetic analysis of family PKNYS09 with novel HPS1 
variant. A From top to bottom: chromatograms of unaffected 
wildtype individual (Top), unaffected heterozygous carrier (Centre), 
and affected individual homozygous for cytosine at position c.2009. 
B ClustalO multiple amino acid sequence alignment of HPS1 
orthologs shows p.Leu670 as highly conserved among species 
(shaded area represent conserved amino acids; light area represent 
non-conserved amino acids)

Fig. 4 Protein modelling studies (Swiss model, SPDBV v4.10) 
demonstrating the location of the HPS1 670Leu position 
within the C-terminal Fuz-longin-3 domain (Third Longin domain 
of FUZ, MON1 and HPS1, orange) [47, 48]. Structurally this domain 
is composed of an α/β fold which contains five anti-parallel 
β-strands organised as a central β-sheet, with two α-helices around it 
(Sanchez-Pulido & Ponting, 2020). (A, B) demonstrate the reference 
amino acid Leucine and (C, D) show the alternate Proline 
arising from the novel HPS1 variant (NM_000195.5: c.2009 T > C; 
p.(Leu670Pro)). The location of this variant within the central β-sheet 
is likely to affect the function of this domain in Rab signalling

Table 3 Genes associated with non-syndromic OCA

Locus Genes Number of variants 
listed in HGMD

Identified in number 
of Pakistani families

OCA1 TYR 565 100 + 

OCA2 OCA2 431 59

OCA3 TYRP1 63 10 + 

OCA4 SLC45A2 207 10 + 

OCA6 SLC24A5 35 3

OCA7 LRMDA 6 -

OCA8 DCT 6 -
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seven studies. MAF for the identified OCA2 muta-
tions c.408_409delAA (p.Arg137Ilefs*83) and c.1045-
15  T > G (splice site mutation) in families PKNYS (05, 
and 06/07) shows not listed and 0.00002 respectively 
in gnomAD v3.1.2 [51]. The splice site variant c.1045-
15 T > G although very rare has been widely reported in 
more than 17 families belonging to the Pakistani popu-
lation accounting for over 30% of the total mutations 
in the OCA2 gene [50] whereas, the frameshift variant 
c.408_409delAA (p.Arg137Ilefs*83) identified in family 
PKNYS05 has only been reported once before in a sin-
gle Pakistani family [12].

In addition to the OCA phenotype, the affected indi-
viduals (IV:1) from families PKNYS 08 and 09 showed 
symptoms like epistaxis and bruising accompanied by 
infections, indicating the presence of HPS (syndromic 
OCA). WES identified one novel and one previously 
reported variant in the HPS1 gene in affected individu-
als. The HPS1 (NM_000195.5) gene responsible for HPS 
type 1 is located on the reverse strand of chromosome 
10q23.1-q23.3 and codes for a 700-residue protein struc-
ture [54], which plays a crucial role in melanosome regu-
lation, organelle biogenesis, and has been reported to 
interact with TYR, TYRP1 and TRP2/DCT. HPS1 affects 
individuals of different ethnicities, including those from 
European, Asian, and South American backgrounds. It 
has a global prevalence of 1/1,500,000–1,000,000, although 
the prevalence is 1/1800 in individuals of Puerto Rican 
decent [55]. Over 98 mutations have been reported in the 
HPS1 gene (HGMD 2022.1), with 9 variants identified in 
the Pakistani population in four reports [11] from all HPS 
subtypes, of which three mutations were present in the 
HPS1 gene (c.1342  T > C, genomic deletion, c.2056C > T) 
[56]. The reported variant c.517C > T (p.Arg173*) in fam-
ily PKNYS08 has been previously described in the Chi-
nese population [46] and although is rare with a MAF 
of 0.00003, whereas the MAF for the novel mutation 
c.2009 T > C (p.Leu670Pro) is not listed in gnomAD v3.1.2, 
and this variant is listed as likely pathogenic in Clinvar, 
although no evidence or clinical details are provided. The 
variant lies in the C-terminal Fuz-longin-3 domain (con-
served region; Figs.  3  and  4) of the HPS1 protein which 
forms a complex (BLOC-3) with HPS4. This complex 
acts as a guanine nucleotide exchange factor (GEF) and 
shows specific activity toward Ra32/38 and can promote 
recruitment of Rab32 and Rab38 to membrane. Further-
more, BLOC-3 and its target Rabs act in the biogenesis 
of melanosomes and alterations in these complexes have 
been reported to cause syndromic forms of OCA like HPS 
[47, 48]. The resulting substitution p.Leu670Pro induces 
changes in the fuzz-domain of HPS1 protein altering the 
quaternary structure due to different characteristics of the 
amino acids leading to changes in Rab signalling (Fig.  4) 

thus, supporting the pathogenicity of this variant in fam-
ily PKNYS09. Currently, there is no potential treatment 
for OCA, and management strategies focus on proper eye 
care and monitoring skin for problems.

Conclusion
Our study identifies novel and reported variants in the 
TYR , OCA2, and HPS1 genes and broadens the muta-
tional spectrum and genetic heterogeneity of OCA in the 
Pakistani population. We further predict the deleterious 
outcome of novel variants using in-silico variant predic-
tion tools and structural analysis. These findings will 
assist in providing an early diagnosis for affected individ-
uals and facilitate the provision of possible genetic coun-
selling for affected families in the Pakistani community 
and worldwide.
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