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Abstract

Conjunctival and subconjunctival fibrogenesis and inflammation are sight compromising side effects that can occur
subsequent to glaucoma filtration surgery. Despite initial declines in intraocular pressure resulting from increasing
aqueous outflow, one of the activated responses includes marshalling of proinflammatory and pro-fibrogenic
cytokine mediator entrance into the aqueous through a sclerostomy window and their release by local cells, as well as
infiltrating activated immune cells. These changes induce dysregulated inflammation, edema and extracellular matrix
remodeling, which occlude outflow facility. A number of therapeutic approaches are being taken to offset declines in
outflow facility since the current procedure of inhibiting fibrosis with either mitomycin C (MMC) or 5-fluorouracil (5-FU)
injection is nonselective. One of them entails developing a new strategy for reducing fibrosis induced by wound
healing responses including myofibroblast transdifferentiation and extracellular matrix remodeling in tissue surrounding
surgically created shunts. The success of this endeavor is predicated on having a good understanding of conjunctival
wound healing pathobiology. In this review, we discuss the roles of inappropriately activated growth factor and cytokine
receptor linked signaling cascades inducing conjunctival fibrosis/scarring during post-glaucoma surgery wound healing.
Such insight may identify drug targets for blocking fibrogenic signaling and excessive fibrosis which reduces rises in
outflow facility resulting from glaucoma filtration surgery.
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Introduction
It is estimated in 2010 that there were more than 60.5
million people worldwide with glaucoma and this num-
ber is expected to increase to reach 79.6 million by 2020
[1]. Glaucoma permanently damages optic neurons,
leading to visual field declines and finally potentially
causing blindness in patients that cannot be treated
properly. Reducing the intraocular pressure is the only
effective therapy to prevent visual impairment and blind-
ness in hypertensive and normotensive individuals [2–4].
Commonly, the first therapeutic approach entails using
topical agents that decrease aqueous humor production
or promote outflow. A wide number of different options
are available some of which are targeted to suppressing
the activity of receptors regulating aqueous humor in-
flow and outflow facility. If the pressure lowering effects
of these agents are not adequate, surgical intervention is

suggested, i.e., laser treatment or filtration surgery [5].
Tube shunt surgery was first authorized and started
to be performed in Japan in 2012 [6]. However, in
Japan and in some other countries, trabeculectomy is
still performed than a tube shunt. Nevertheless, in
Europe and the US, the tube shunt is now the stand-
ard glaucoma filtration surgical procedure [7]. In any
case, the fibrogenic and inflammatory processes are
basically the same in both procedures. With filtration
surgery, a scleral fistula is created to increase fluid
drainage from the aqueous humor. This drained fluid
accumulates underneath the conjunctiva creating a fil-
tering bleb. Tissue fibrosis resulting from an overly
driven wound healing response may impair filtering
bleb formation and reduce aqueous humor outflow
causing reversal of the initial decline in intraocular
pressure. We deal here with the pathobiological sub-
conjunctival wound healing responses induced by
glaucoma filtration surgery, which affect the duration
of the pressure lowering effect of this procedure. An-
other factor that we consider is the contribution
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made by different types of conjunctival responses to
injury that offset declines in IOP achieved by this
procedure.

Mechanism of fibrosis/scar of anterior
ocular segments
Overview
The pathophysiological mechanisms activated by in-
jury inducing tissue fibrosis are the same in all non-
nervous tissues and organs of the human body. For
example, injury-induced corneal and conjunctival fi-
brotic development mirrors the sequel occurring in
skin. In these tissues epithelial and mesenchymal cells
undergo during, wound healing complex and dynamic
changes. Their exposure to an inflammatory milieu
promotes phenotypic changes leading to increases in
proliferation and migration, and tissue remodeling. In-
flammation occurs during an early phase of wound
healing and is attributable to immune cell activation
of neutrophils and macrophages causing them to
elaborate proinflammatory cytokines and chemokine
and infiltrate into a wound. Ocular surface stromal
cells are normally quiescent, but they become acti-
vated at a wound by various proinflammatory cyto-
kines released by infiltrating inflammatory cells. For
example TGF-β release induces mesenchymal cell and
fibroblast activation leading them to subsequently reenter
the cell cycle, migrate and undergo transformation into
myofibroblasts. These transformed cells elaborate a host
of mediators which degrade the extracellular matrix
(ECM) and components that frequently fail to restore its
original organization. ECM remodeling is attributable to
excessive accumulation of matrix components consisting
of an interlocking meshwork of collagen with other ECM
components such as proteoglycans and glycosaminogly-
cans (GAGs), which are one of its side chain constituents.
Characteristic of this remodeling process is tissue granula-
tion accompanied by inflammatory cell influx, neovascu-
larization and altered vascular permeability
Myofibroblasts elaborate contractile proteins whose

contractile force also contributes ECM reorganization
and loss of tissue functionality. They are derived through
TGF-β-activated mesenchymal cells, i.e., subconjunctival
fibroblasts transdifferentiation at the site of injured tis-
sue. It is unclear whether or not bone marrow-derived
fibrocytes make a significant contribution to tissue re-
modeling. Epithelial or endothelial cells can also under
dedifferentiation and transformation into myofibroblast
phenotype after injury [8], indicating there are several
potential sources of myofibroblasts. At a fibrotic/scar le-
sion, persistent inflammation and myofibroblast forma-
tion must be subdued to permit normal tissue function
restoration [9, 10]

Histopathology of filtering bleb following wound healing
post-trabeculectomy
Conjunctiva fibrosis/scar formation during wound heal-
ing induced by ocular surgery reduces aqueous filtering
in the surgically treated glaucomatous eye (discussed
below) and shrinks the conjunctival sac during healing
following various ocular surgeries. For example, in the
latter case the loss of conjunctival flexibility due to fibro-
sis hinders wound surface resurfacing rendering the tis-
sue vulnerable to microbial infection.
Currently, intraocular pressure lowering is the only

evidence-based effective glaucoma treatment [2, 3]. In
glaucoma patients unsuccessfully treated with glaucoma
medications, filtration surgery is performed for the pur-
pose of reducing intraocular pressure. Trabeculectomy is
the gold standard for glaucoma filtration surgery. Al-
though this procedure was first introduced in the 1960’s
by Cairn, it is still common surgical procedure in Japan
and in some other countries [5]. Filtration surgery via
scleral surgical fistula implantation is a drainage proced-
ure, which diverts intraocular aqueous humor fluid to
underneath the conjunctiva. Bleb formation in the con-
junctiva is indicative of a successful procedure. If the fis-
tula remains in place, a favorable prognosis is anticipated
assuming the fistula remains patent and a working filter-
ing bleb is retained. In other words, the surgical outcome
depends on filtration sufficiency through a sclerostomy
that is insensitive to differences in the conjunctival wound
healing response induced by surgery. However, conjunc-
tiva fibrosis/scar formation often disrupts aqueous humor
drainage into the bleb, which is an undesirable complica-
tion following filtering surgery.
Another problem making management of glaucoma

somewhat problematic is that a commonly prescribed
drug class, prostaglandin analogues, can induce inflam-
mation by upregulating proinflammatory cytokine gene
expression even though they stably reduce intraocular
pressure [11, 12]. There are several reports describing an
inverse correlation between subclinical inflammation
and filtration surgery outcome. However it is still un-
certain if such a relationship exists between conjunc-
tival inflammation and prognosis of surgery [13, 14].
Subclinical inflammation may be undesirable for wound
healing, but further studies are needed to determine if
there is an association between other types of glaucoma
medication, dosage duration and ocular inflammation.

Roles of aqueous humor-derived growth factors/cytokines
on conjunctival bleb scarring
Variations in the aqueous humor TGF-β2 ratio between
its active and inactive forms are postulated to modulate
the filtering bleb, and fibrotic reactions induced by local
fibroblasts [15], Increases in the ratio of this growth
factor occurs in tissues compromised by injury. Hu et al.
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reported that aqueous humor VEGF levels increase in
neovascular and primary open angle glaucoma patients
[16]. Park et al. reported that VEGF induces TGF-β1 to
rise in the subconjunctival scar tissue after trabeculect-
omy and suggested that VEGF increases can stimulate
the TGF-β1/Smad/Snail signaling pathway leading to
myofibroblast transformation [17]. TGF-β1 and β2 are
both capable of promoting fibroblast-myofibroblast trans-
differentiation and ECM remodeling (discuss in below).
Sawada et al. reported that glaucoma patients had higher
levels of tumor necrosis factor-α (TNF-α), than in
normal controls [18]. TNF-α is one of the major pro-
inflammatory growth factors besides proinflammatory
interleukins (ILs). For example, IL-6 and IL-8 levels are
significantly elevated in glaucoma patients [19, 20].
It is to be noted that increases in a lens epithelial cell-

derived factor also affects a wound healing reaction in
filtering bleb tissue. Such an effect was observed after a
trabeculectomy was performed in one eye after having
received an intraocular lens implant. Phacoemulsifica-
tion extraction of a cataractous lens epithelial cells up
regulate macrophage-chemoattractant protein-1 (MCP-
1) levels in the aqueous humor [21]. MCP-1 induces
macrophage infiltration into local tissue, leading there to
rises in proinflammatory and fibrotic growth factors.
Monocyte-macrophage infiltration also makes an import-
ant contribution to tissue fibrosis [22]. Activated macro-
phages in an injured tissue produce pro-inflammatory/
pro-fibrogenic growth factors and cytokines, i.e., VEGF,
PDGF, TGF-β and TNF-α [23–25]. Excessive ECM elabor-
ation and rises in cytokines/growth factors lead to fibrosis.
Therefore, drug management of macrophage activity
could become a promising target to reduce injury-induced
fibrosis. Serum amyloid P (SAP) or pentraxin 2 (PTX2) is
a member of the pentraxin family and is thought to be a
potent modulator of the monocyte macrophage response
[26]. Recently a recombinant reagent of human SAP,
PRM-151 was developed and its effect was evaluated on fi-
brotic diseases such as idiopathic pulmonary fibrosis and
myelofibrosis. It may be a promising agent for preventing
scar formation after glaucoma surgery [27, 28]

Roles of growth factors/cytokines expressed in local
fibroblasts and inflammatory cells on conjunctival
bleb scarring
Besides increasing aqueous humor growth factor and
cytokine levels, injury to (sub)conjunctival tissue result-
ing from surgical intervention activates local tissue cells,
e.g., fibroblasts and also induces proinflammatory neu-
trophils and macrophages infiltration into a wound.
They express a large number of growth factors and pro-
inflammatory cytokines promoting tissue inflammation
and fibrosis. In the very early phase post-injury or sur-
gery, local fibroblasts are rapidly activated by signals that

in turn sensitize various sensors of external stimuli to
undergo activation. These sensors include cation chan-
nels receptors that elicit activation of downstream linked
signaling pathways. Tissue damage also directly trans-
forms latent TGF-β stored in ECM into an active form.
Chemokines and growth factors/cytokines secreted by
local fibroblasts and activated TGF-β stimulate fibroblast
and monocytes-macrophages activation. All of these al-
tered cell types elicit factors modulate the sequential
linked events controlling wound healing [29].

Potential targets for modulation of wound healing in
conjunctiva post-trabeculectomy
Currently, adjunctive application of mitomycin C (MMC)
or 5‑fluorouracil (5‑FU) after filtering surgery is per-
formed to attenuate postoperative subconjunctival fibro-
blasts proliferation for suppressing excessive bleb scarring.
These adjunctive anti-metabolites have much improved
the success rate of trabeculectomy [30]. These drugs are
used post or during surgery to prevent subconjunctival fi-
brosis. 5-FU is a pyrimidine analog that was originally ap-
plied as a cancer treatment. 5‑FU acts as an inhibitor of
the enzyme thymidylate synthetase during the S phase of
cell cycle. This agent can be used during or post surgery.
Several studies describe 5‑FU efficacy use after glaucoma
surgery [31–33]. MMC inhibits DNA synthesis and it was
originally used as a systemic anti-tumor agent isolated
from Streptomyces caespitosus. Various studies demon-
strated MMC increases trabeculectomy success [34–36].
However, the effects of MMC on cell proliferation are not
cell type specific and in excessive amounts it can be cyto-
toxic. Furthermore, these agents can induce acellular and
avascular bleb formation, which are susceptible to leakage
and microbial infection [37, 38]. Therefore more targeted
and less toxic agents are still needed. We next review
promising drug targets whose modulation affect wound
healing responses to injury.

Interleukins (ILs)
Interleukins (IL) are a group of cytokines with complex
immunomodulatory functions including cell prolifera-
tion, maturation, migration and adhesion control as well
as having important roles in regulating immune cell dif-
ferentiation and activation [39]. Some of the IL family
members are well recognized as pro-inflammatory cyto-
kines concerned with fibrotic or inflammatory diseases,
i.e., IL-1, 6 and IL-8. These ILs are designated thera-
peutic drug targets and several inhibitors are under in-
vestigation to determine if they are effective in the
prevention/treatment of unfavorable tissue fibrosis/scar-
ring. Piquet et al. administered an IL-1 receptor antag-
onist (IL-1ra) to mouse pulmonary fibrosis model mice
and showed that it prevented collagen deposition and im-
proved lung fibrosis [40]. Tocilizumab, an IL-6 receptor
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inhibitor, in a rheumatoid arthritis clinical study OPTION
study), decreased inflammation and tissue scarring [41].
This finding prompted us to hypothesize that this inhibi-
tor is an effective agent for reducing inflammation and
scarring following glaucoma surgery.
Some of the IL members, i.e., IL-7, IL-10 or IL-22, also

exhibit anti-fibrotic effects on cells. IL-7 binding to its re-
ceptor activates signaling that counteracts TGFβ/Smad
signal and thus suppresses ECM expression by fibroblasts
[42]. IL-10 reportedly suppresses fibrotic reaction in ex-
perimental liver fibrosis model in rats. Gene ablation of
IL-10 exaggerates the pathology of experimental colitis or
renal interstitial fibrosis induced by unilateral ureter
ligation in mice, also indicating that this IL exhibits anti-
fibrotic or anti-inflammatory effects [43, 44].
IL-22 is another anti-fibrotic/anti-inflammatory IL and

is an IL-10 family member. For example, systemic ad-
ministration of recombinant IL-22 has an anti fibrotic
effect in a rat liver fibrosis model presumably caused by
Stat3 signaling inhibition [45]. In an injured conjunctiva,
these pro- or anti-fibrotic ILs presumably have complex
effects on local fibroblasts and inflammatory cell behavior.

Vascular endothelial growth factor (VEGF)
Vascular endothelial growth factor (VEGF) is a potent
mediator of vascular homeostasis, i.e., angiogenesis, vas-
culogenesis and vascular endothelial cell permeability
[46, 47]. Angiogenesis is an important component of
wound healing leading to fibrosis. Currently several anti
VEGF agents are being evaluated for use in treating age-
related macular degeneration and other retinal diseases
[48]. As VEGF concentration is elevated after glaucoma
surgery and plays a key role promoting cell proliferation,
it could be also a drug target for preventing excess fibro-
sis/scarring in post-surgery (sub)conjucntival tissue [49].
Kahook et al. demonstrated in humans that subconjunc-
tival injection after glaucoma surgery of an anti VEGF
antibody, bevacizumab, maintained the bleb [50]. Coote
et al. showed that this procedure following cataract sur-
gery prevented bleb failure and reduced its vascularization
[51]. Several other reports suggest the possibility that anti-
VEGF agents in combination with MMC and 5-FU have a
synergistic effect in improving glaucoma surgery outcome
[52, 53]. Moreover, topical bevacizumab application pre-
vented MMC side effects since it reduces the exposure
time to this mitotic inhibitor, which is injected into scleral
and subconjunctival tissues at the site of trabeculectomy.
In addition, it was found that this procedure improved
bleb survival [54]. Van Bergen and et al. showed that
VEGF isoforms play a different role in scar formation
since injecting Pegaptanib, an RNA aptamer directed
against VEGF165, a VEGF subfamily member involved
in pathological angiogenesis, improved surgical out-
come using a rabbit model of trabeculectomy [55].

Overall VEGF has a pivotal role in determining the
wound healing response to glaucoma surgery. The
optimum route of administration and dosing regimen
of anti-VEGF therapy is still requires careful consider-
ation [56].

Platelet-derived growth factor (PDGF)
The PDGF family of growth factor isoforms consists of
five different disulphide-linked dimers built up of four
different polypeptide chains encoded by four different
genes. Besides inducing macrophages and fibroblasts to
proliferate and migrate into a wound site, their upregula-
tion leads to fibrosis [57–59]. Akiyama et al. applied
ARC126 and ARC127, PDGFβ inhibitors, in a prolifera-
tive vitreoretinopathy (PVR) model and reduced both
epi-retinal membrane formation and retinal detachment
[60]. The same strategy may be useful for managing
glaucoma surgery.

Connective tissue growth factor (CTGF)
TGF-β upregulates Connective Tissue Growth Factor
(CTGF) expression, which is one of the most important
fibrogenic cytokines. As TGF-β mediates through CTGF
persistent fibrosis, drug targeting either CTGF or TGF-β
signaling may also prevent declines in filtering bleb size
by reducing scar tissue formation [61–63]. Blocking
CTGF has already successfully reduced conjunctival
scarring disorders, e.g., vernal conjunctivitis or Stevens-
Johnson syndrome [64].

Matrix metalloproteinases (MMPs)
MMPs are a group of proteolytic enzymes degrading
most extracellular matrix proteins during ECM remodel-
ing. Their activity is dysreglulated in connective tissue
matrices diseases such as arthritis, tumorigenesis and ul-
ceration making them a therapeutic target for reducing
scar formation [65–67]. Wong et al. demonstrated that a
MMP inhibitor, GM6001, significantly reduced scar for-
mation post glaucoma surgery in rabbits [68]. Inhibition
of MMP could provide another therapeutic option for
reducing fibrosis in post glaucoma filtration surgery.

Lysyl oxidase (LOX) and lysyl oxidase like proteins (LOXL)
Lysyl oxidase (LOX) and lysyl oxidase-like (LOXL) are
ECM enzymes crosslinking substrates such as collagen
and elastin, which leads to fibrosis [69, 70]. There are
several lysyl oxidase family members, LOXL1, 2, 3 and 4
and each one of them has a biological function. An anti
LOXL2 monoclonal antibody (AB0023) reduced inflam-
mation as well as growth factor production and sup-
pressed TGF-β signaling in xenograft tumor models
[71]. Van Bergen et al. applied an anti LOXL2 monoclo-
nal antibody (GS-607601) to rabbits undergoing glau-
coma surgery and it reduced both inflammation as well
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as fibrosis. LOXL2 could be a promising therapeutic
target for reducing scar formation after glaucoma sur-
gery [72].

Rho kinase signal
Rho-associated protein kinases (ROCK 1 and 2) are
downstream components of Rho-GTPase Rho mediated
signaling and play an important role in cytoskeletal
organization. They also control cellular morphology
migration and motility [73]. Honjo et al. showed that
topical application of the ROCK inhibitor, Y-27632,
improved the outcome of experimental glaucoma fil-
tration surgery presumably by suppressing fibrogenic
collagen deposition in tissue around blebs [74]. Rac1
is a low molecular weight Rho GTPase that is essen-
tial for cell motility and wound healing [75]. Tovell
et al. demonstrated that either inhibiting Rac1 with
NSC23766 or siRNA mediated gene silencing reduced
conjunctival tissue fibrosis and collagen matrix contrac-
tion [76]. In Japan, a Rho kinase inhibitor is already ap-
proved for use to lower IOP in glaucoma patients. It
remains to be determined if this inhibitor also has anti-
fibrosis effects on the wound healing process following fil-
tration surgery.

Secreted protein acidic and rich in cysteine (SPARC)
SPARC is a 43 kDa collagen-binding matricellular glyco-
protein contributing to ECM organization as well as cell
migration mediation. These functions are manifested by
modulating cellular interactions with the surrounding
ECM [77, 78]. Its involvement in such control is evident
since following SPARC knockdown cell movement and
collagen gel contraction declined. Furthermore, TGFβ2-
driven up regulation of type I collagen and fibronectin
expression in vitro was suppressed [79]. In mice liver
fibrosis models, SPARC-null mice inflammation and
fibrosis were reduced although cellular mechanisms
underlying these effects remain to be more fully elucidated
[80]. In the eye, SPARC loss of function preserved and
prolonged conjunctival bleb survival following experi-
mental filtration surgery [81]. These effects suggest
that reducing SPARC expression could be a novel op-
tion for suppressing (sub)conjunctival fibrosis.

Angiotensin II
Recently it became apparent that angiotensin II is one of
the common factors causing liver, kidney, heart and ocu-
lar fibrosis [82–85]. Angiotensin II has many biological
functions besides including increasing cell proliferation,
apoptosis, migration, inflammatory responses and ECM
remodeling [86, 87]. Angiotensin-converting enzyme in-
hibitors and angiotensin receptor (AT1) antagonists sup-
pressed vascular damage by inhibiting tissue fibrosis
[88]. As for the anterior ocular segment, angiotensin II

induced corneal myofibroblasts survival via activating
NF-κB signaling, which promoted corneal fibrosis [84].
This might also be the case in (sub)conjunctival tissue.
Shi et al. reported that angiotensin II levels were ele-
vated along with its cognate receptors after glaucoma
surgery in rabbits and angiotensin II promoted cell pro-
liferation and migration in vitro. They suggest that
angiotensin II may play an important role in wound
healing after trabeculectomy and it can be a promising
drug target to prevent scar formation during post filtra-
tion surgery [89].

Transient receptor potential (TRP) channels
Transient receptor potential (TRP) channels are polymo-
dal receptors that are commonly expressed in human
tissues including the eye [90]. There are 28 different
TRP channels that are subdivided into seven different sub-
families (TRPA, TRPC, TRPM, TRPML, TRPN, TRPP, and
TRPV) [91]. They are activated by multiple endogenous
and external stimuli and mediate pertinent wound healing
functions. These receptor-induced responses include cell
proliferation and migration stimulation along with indu-
cing immune cell activation, tissue infiltration and fibrosis
[92, 93]. Activation of some of the TRP channel subtypes
contributes to liver, lung, kidney and heart fibrotic disease
induction [94]. Okada et al. reported that in an alkali-burn
mouse wound healing model TRPV1 antagonist treatment
suppressed fibrosis during healing cornea and inhibited
myofibroblast transdifferentiation in vitro using ocular
fibroblast [95]. This improved wound healing response in-
duced by an alkali burn was replicated in homozygous
TRPV1 knockout mice. TRPV1 activation by injury is
dependent on TGFβ receptor stimulation inducing trans-
activation of this ion channel through a p38MAPK Smad2
linked signaling pathway loop. Increasing the open time of
this channel enhances intracellular Ca2+ influx, which trig-
gers myofibroblast transdifferentiation and rises in proin-
flammatory cytokine release along with fibrosis [96]. Loss
of TRPA1 function in mice also reduced inflammation
and fibrosis during wound healing following an alkali burn
in mice [97]. Developing novel selective TRP channel an-
tagonists for suppressing injury-induced TRPV activation
may be another novel option for improving the outcome
of fibrogenic wound healing.

Transforming growth factor-β (TGF-β)
Among the wound healing promoting cytokines/growth
factors, TGF-β is the most efficacious mediator of con-
junctival scarring elicited by injury. There are many on-
going experimental and clinical trials evaluating drug
options to suppress TGF-β-induced scar formation. Tra-
nilast suppresses collagen production by specifically
interfering with TGF-β activation of this response [98].
Chihara et al. used Tranilast in a pilot study after
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glaucoma surgery and found that it improved filtering
bleb conditions [99]. TGF-βtype II receptor siRNA gene
silencing suppressed fibronectin production and cell mi-
gration in vitro. In a mouse model, this procedure re-
duced the inflammatory response and matrix deposition
post glaucoma surgery [100]. On the other hand, in clin-
ical trials applying an anti TGF-β2 neutralizing antibody
against failed to suppress fibrosis/scar after filtering sur-
gery [101]. One possible explanation for this negative
result is that the aqueous humor contains abundant
TGF-β2, whereas TGF-β1 and β2 are produced by cells
residing in the filtering bleb tissue [102]. Thus, it may be
necessary to target all TGF-β family members rather than
each individual TGF-β isoform for achieving a more desir-
able therapeutic outcome.
TGF-β isoforms activate cell surface TGF-β serine/

threonine kinase receptors linked to signal transduction
networks involving mitogen-activated protein kinase
(MAPK)/ Extracellular Signal-Regulated Kinase (ERK),
p38MAPK, C-Jun-N-terminal kinase (JNK), and Smads.
Therefore, blocking TGF-β stimuli at the receptor level
may potentially compromise epithelial healing on the
ocular surface. Alternatively, it might be preferable to se-
lectively block downstream signals induced by TRPV1
activation such as p38MAPK and Smad2/3/4/ complex-
ation within mesenchymal cells and fibroblasts and
thereby preserve the TGF-β signaling mediating main-
tenance of epithelium homeostasis.
For now, we focused on blocking the Smad pathway be-

cause of its involvement in triggering fibrosis induced by
TGF-β. Regardless of the ligand isoform, blocking Smad2/
3 signal suppressed TGF-β/Smad signaling pathways,
allowing us to bypass the tissue-specific distribution of
each TGF-β isoform in situ. Smad7 is one of the most im-
portant key players suppressing the TGF-β signaling medi-
ated by Smads. Promising strategies have been developed
to induce Smad7 expression by small molecule agents,
e.g., IL-7, emodin and interferon-gamma and gene therapy
prevent conjunctival fibrosis/scarring [42, 103–106]. In-
deed, Smad7 adenoviral vector gene transfection into hu-
man subconjunctival fibroblasts inhibited TGF-β1induced
up-regulation of fibrogenic and inflammatory cytokines
[105]. Moreover, Smad7 gene transfer also attenuated the
fibrogenic reaction in a healing, incision-injured, mouse
conjunctiva, suggesting that this strategy might have a
therapeutic potential in the prevention of excess scarring
in the post-trabeculectomy filtering bleb [105]. Additional
studies are required to delineate the roles of growth fac-
tors in controlling changes in ECM organization and be-
havior subsequent to injury induced by surgery. As TGF-β
is a major player in inducing the untoward physiological
and pathological changes associated with ocular wound
healing, new strategies are needed to selectively reduce
ocular fibrosis and inflammation.

Conclusion and future perspectives
Even though ophthalmologists have developed many
modifications improving glaucoma surgery, the outcome
of this procedure still is variable due to limited success
in selectively suppressing (sub)conjunctival fibrosis. The
anti-proliferative drugs, MMC and 5-FU, are somewhat
effective in reducing fibrosis, but their side effects can
be worrisome due to their lack of cell type specificity in
inducing cytotoxic effects besides inhibiting cell prolifer-
ation. These limitations indicate that novel drugs must
still be developed to improve long term glaucoma med-
ical management subsequent to this procedure. Their
development hinges on first identifying targets whose
modulation will selectively reduce injury-induced fibrosis
and inflammation. This need is being met in part by de-
lineating the various intracellular signal transduction
pathways activated by a set of growth factors and cyto-
kines involved in mediating wound healing. Moreover,
through characterizing the pattern of changes in specific
growth factors and cytokine expression induced by in-
jury specific candidates have been identified for drug tar-
geting. Another hurtle is that drug delivery systems need
to be developed for overcoming the anterior ocular sur-
face barrier function permitting sustained localized drug
release. Excellent review articles are available on the
pathobiology and clinical problems in bleb fibrosis.
These articles deal with the roles of other growth factors
or cytokines not addressed in this review [107, 108]. We
hope that this presentation provides meaningful insight
helping efforts to develop new promising anti-fibrotic
and inflammatory agents that are more specific, safer
and personalized facilitating glaucoma surgery-induced
wound healing outcome by reducing attendant fibrosis
and inflammation.
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