
RESEARCH ARTICLE Open Access

Construction and implications of structural
equation modeling network for pediatric
cataract: a data mining research of rare
diseases
Erping Long1, Shuangjuan Xu2, Zhenzhen Liu1, Xiaohang Wu1, Xiayin Zhang1, Jinghui Wang1, Wangting Li1,
Runzhong Liu3, Zicong Chen3, Kexin Chen1, Tongyong Yu1, Dongxuan Wu1, Xutu Zhao1, Jingjing Chen1,
Zhuoling Lin1, Qianzhong Cao1, Duoru Lin1, Xiaoyan Li1, Jingheng Cai2* and Haotian Lin1*

Abstract

Background: The majority of rare diseases are complex diseases caused by a combination of multiple morbigenous
factors. However, uncovering the complex etiology and pathogenesis of rare diseases is difficult due to limited
clinical resources and conventional statistical methods. This study aims to investigate the interrelationship and the
effectiveness of potential factors of pediatric cataract, for the exploration of data mining strategy in the scenarios of
rare diseases.

Methods: We established a pilot rare disease specialized care center to systematically record all information and
the entire treatment process of pediatric cataract patients. These clinical records contain the medical history,
multiple structural indices, and comprehensive functional metrics. A two-layer structural equation model network
was applied, and eight potential factors were filtered and included in the final modeling.

Results: Four risk factors (area, density, location, and abnormal pregnancy experience) and four beneficial factors
(axis length, uncorrected visual acuity, intraocular pressure, and age at diagnosis) were identified. Quantifiable
results suggested that abnormal pregnancy history may be the principle risk factor among medical history for
pediatric cataracts. Moreover, axis length, density, uncorrected visual acuity and age at diagnosis served as the
dominant factors and should be emphasized in regular clinical practice.

Conclusions: This study proposes a generalized evidence-based pattern for rare and complex disease data mining,
provides new insights and clinical implications on pediatric cataract, and promotes rare-disease research and
prevention to benefit patients.
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Background
Rare diseases are regarded as one of the main global
disease burdens worldwide. Most of rare diseases are
considered as complex diseases that are caused by a
combination of multiple morbigenous factors [1]. How-
ever, uncovering the complex etiology and pathogenesis

of rare diseases is difficult because of limited clinical re-
sources and conventional statistical methods. Therefore,
there is an urgent need to build a network combining
multidimensional rare-disease data with innovative
computational methods [2, 3].
Pediatric cataract is a typical rare disease with signifi-

cant risk of visual loss [4]. Risk factors, systematic symp-
toms, and multi-dimension clinical evaluations are
simultaneously indispensable for the pediatric cataract
prevention and treatment process [5–9]. Therefore,
pediatric cataract, which jointly combined the intricate
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pathogenesis and intractable clinical situation, is a suitable
test case for the exploration of computational modeling
and data mining for rare diseases.
Structural equation modeling (SEM) is a multivariate

statistical technique that incorporates factors and path
analysis [10], which is able to handle not only measur-
able variables, but also latent factors that cannot be
measured or observed on their own. Latent variables,
frequently encountered in substantive researches, are
needed to be expressed by several measurable variables.
However, most existing modeling techniques, such as
multiple regression and observed variable analyses, can-
not deal with latent variables whilst SEM compensates
for these issues. Moreover, SEM can accurately measure
unreliable events because it takes the measurement
errors into account. Therefore, SEM has multiple advan-
tages for the modeling of complex processes beyond
simple correlations.
To explore the feasibility of applying SEM for the data

mining of rare diseases, we established a pilot rare-disease
specialized care center [Childhood Cataract Program of the
Chinese Ministry of Health (CCPMOH)] to systematically

record all basic information and the entire treatment
process for pediatric cataract patients [11]. These
clinical records contain the medical histories, multiple
structural indices, and comprehensive functional met-
rics. We constructed a two-layer SEM network aiming
to explore the interrelationship and the effectiveness of
these potential factors and to provide clinical implications
for pediatric cataract. We hope that this study will
propose a generalized evidence-based pattern and valuable
reference for rare and complex disease research.

Methods
The methods portion of the pipeline consists of three
sections. The first section provides the procedure for the
original data integration, description, and definition. The
second section includes a detailed methodology for SEM
network construction. The third section is concentrated
on the network evaluation indices and contribution of
factors, which could serves as a reference for clinical
interpretation. Each section is described below. The
study pipeline is presented in Fig. 1.

Fig. 1 Pipeline of the study. The study pipeline consists of three sections. a for the first stage in original data integration, 15 potential factors
of 160 CCPMOH patients were included into analysis (237 patients recruited with 77 excluded due to incomplete or missing clinical record).
All the included patients are diagnosis with pediatric cataract. b for the second stage, after pre-modeling, 8 filter factors were included into
the final two-layer network construction. c, for the third stage, fitting indices (χ2 et al.) were used for the network evaluation. Estimated and
standardized values were obtained after evaluation. Finally, these values accompanied with previous clinical evidences could be translated into
clinical interpretations. CCPMOH Childhood Cataract Program of the Chinese Ministry of Health
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Study population
A total of 237 patients registered with the CCPMOH [11]
were recruited from Zhongshan Ophthalmic Center [12],
one of China’s largest eye hospitals, located in Guangzhou
city, south China. Seventy-seven patients with wide range
of incomplete or missing clinical record were excluded.
All the included patients are diagnosed with pediatric
cataract according to the International Statistical Clas-
sification of Diseases and Related Health Problems 10th
Revision (ICD-10) Version (Disease numbers: H26.0
and Q12.0) [12]. Finally, 160 patients’ data records were
included into the analysis and SEM construction. The
dataset was anonymized throughout the research.

Ethics approval
The research protocol was approved by the Institutional
Review Board/Ethics Committee of Sun Yat-sen University
(Guangzhou, China). Informed written consent was ob-
tained from at least one family member of each participat-
ing patient, and the tenets of the Declaration of Helsinki
were followed throughout this study. To allow confidential
evaluation of the use of a slit-lamp, a Tono-Pen, a Penta-
cam imaging system and the Teller visual acuity (VA)
cards in this study, this trial was registered with the Clin-
ical Research Internal Management System of CCPMOH.
The authors affirm that all ongoing trials and trials related
to this study are registered.

Examination protocol and variable definitions
All original variables and their SEM constructions are
displayed in Table 1.

The age at diagnosis, height, weight, family hereditary
history, abnormal parturition history, and abnormal
pregnancy history were collected in regular clinical prac-
tice. The diagnosis of pediatric cataract was made by
experienced ophthalmologists according to the ICD-10
Version [13]. The family hereditary history was defined
as any similar disease history of immediate family mem-
bers. The abnormal parturition history included but was
not limited to an abnormal fetal position, abnormal pla-
centa and amniotic fluid, fetal distress, breech birth, fetal
macrosomia, and hypamnion. The abnormal pregnancy
history included premature delivery, post-term preg-
nancy, pregnancy complicated with infection, gestational
hypertension and gestational diabetes mellitus.
Area, density, and location are three critical lesion in-

dices that are defined for the comprehensive evaluation
and treatment decisions of pediatric cataracts (details
definition in Additional file 1) [14].
Laterality was classified as bilateral cataracts or a

unilateral cataract. For unilateral cataracts, data from
the affected eye were included in the analysis and
modeling. For bilateral cataracts, if the interocular
lesion (area, density, and location) presented no dif-
ferences, only the variables of the right eye were
chosen for the modeling and analysis; otherwise, data
from this patient were excluded to avoid bias caused
by reduplicative datasets.
The ocular complications consisted of microphthal-

mia, micro- or megalocornea, keratoconus, glaucoma,
traumatic or complicated cataracts, or vitreous and ret-
inal diseases. Otherwise, the data were regarded as “no
ocular complications”.
The intraocular pressure (IOP) measurement was con-

ducted using a Tono-pen tonometer (Reichert Inc., See-
feld, Germany) (details in Additional file 1) [15, 16].

Axial length (AL)
The contact A scan (B-SCAN-Vplus/BIOVISION, Quan-
tel Medical, Clermont–Ferrand, France) was used to ob-
tain the AL measurements (details in Additional file 1).

VA – Uncorrected visual acuity (UCVA) and best-corrected
visual acuity (BCVA)
For preverbal children, a complete set of Teller VA Cards
(Stereo Optical Company, Inc., IL, USA) was used to meas-
ure the monocular grating acuity of the eyes with cataracts
[17]. The set consisted of 15 cards with gratings ranging in
spatial frequencies from 0.32 cycles/cm to 38 cycles/cm in
half-octave steps as well as a low vision card and a blank
gray card. The infant was assessed using the standard
procedure of the operation manual [18, 19]. For verbal chil-
dren, visual functions were measured and recorded using a
LEA Symbols 13-Line Translucent Distance Chart (Good-
Lite Co., IL, USA) according to the standard procedure.

Table 1 Summary of original variables and SEM constructions

Two-layer Variables One-layer Variables Original Variables

Overall index Concomitant variables Age at diagnosis

Laterality

Height

Weight

Family heredity history

Abnormal parturition
history

Abnormal pregnant history

Structural indices AL

Area

Density

Location

Functional indices Ocular complications

IOP

UCVA

BCVA

AL Axial length, IOP Intraocular pressure, UCVA uncorrected visual acuity, BCVA
best-corrected visual acuity
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The BCVA was assessed using spectacles after the UCVA
examination. The results were translated into log MAR VA
for analysis and modeling [20].

Quality control
Three experienced pediatric ophthalmologists (H.T.L.,
J.J.C. and Z.L.L.) performed all examinations according
to our study protocols.

Structural equation modeling
For the pre-modeling, the age at diagnosis, height, weight,
family hereditary history, abnormal parturition history,
and abnormal pregnancy history were considered the con-
comitant variables. The AL, area, density, and location
were loaded into the one-layer latent variance and termed
the structural index (STR). The ocular complications, IOP,
UCVA and BCVA were loaded into another one-layer
latent variance and termed the functional index (FUN).
The overall index (OVE) was settled as the two-layer
latent variance. The aforementioned structure for pre-
modeling is presented in Table 1.
In the pre-modeling process, primary significance

analysis and iteration testing were applied for variable
fitting. The combination of the variables for the best SEM
fitting will be accept and proceeded into further analysis.
After pre-modeling, a total of 8 filtered variables were
selected and included in the final SEM (Table 2).

SEM was conducted to statistically test the interrela-
tionships of the constructs and their relationships with
the structural, functional, and overall components in our
study population. Prior to modeling the relationship
between latent variables, a measurement model was
evaluated for each dietary behavior component. This
step involves a confirmatory factor analysis to reveal the
relationship between the latent variables and their indi-
cator variables. The following step (i.e., testing of the
structural model) estimates the strength of the relation-
ships between these latent variables. It also allows for an
examination of the direct and indirect effects among the
constructs in the model. The data were examined prior
to modeling to ensure that they met the assumptions of
the proposed SEM and were analyzed using the robust
weighted least squares procedure in Mplus 7.0 (Mplus,
Los Angeles, Calif ) [21].
To evaluate the goodness of fit of the model, the χ2-

value was calculated together with the degrees of free-
dom and four other indices as follows: the root mean
square error of approximation (RMSEA), the Tucker-
Lewis index (TLI), the comparative fit index (CFI), and
the weighted residual root mean square residual
(WRMR). Values below 0.08 for RMSEA, below 1.0 for
WRMR and above 0.90 for TFI and CFI indicate an
acceptable fit of the data to the hypothesized model
(details in Additional file 1).

Results
Participant characteristics
A total of 160 participants from the CCPMOH database
with 8 filtered variables were included in the final SEM
analysis (details in Table 2). The mean age of the in-
cluded participants was 50.99 months ± 36.38 months
and 23.13% (n = 37) of our patients had an abnormal
pregnancy history. For the STR network, the mean AL
value was 21.75 mm ± 2.06 mm, 55% (n = 88) of our
patients had an extensive area, 37.5% (n = 60) of our
patients had dense opacity, and 60.63% (n = 97) of our
patients’ opacities had central locations. For the FUN
network, the mean IOP value was 15.12 ± 6.88 mmHg,
and the mean UCVA value (logMAR) was 0.77 ± 0.44.

Goodness-of-fit of the models
As shown in Table 3, the overall fit of the measurement
and the structural models was satisfactory (χ2 = 26.093,
df = 16, P = 0.1113; RMSEA = 0.053, P = 0.422;
CFI = 0.995; TFI = 0.992; WRMR = 0.781). Finally, the
estimates of the SEM constructs are presented in Table 4.

Interrelationships of the constructs
The standardized SEM architecture and interrelation-
ships of the constructs are displayed in Fig. 2.

Table 2 Summary of the distribution of the 8 filtered variables
included in the final SEM analysis

Two-layer
Variables

One-layer
Variables

Original Variables Detailed distribution

Overall
index

Concomitant
variables

Age at diagnosis 50.99 ± 36.38 months

Abnormal pregnancy
history

23.13% (+)

76.87% (−)

Structural
indices

AL 21.75 ± 2.06 mm

Area 55% (Extensive)

45% (Limited)

Density 37.5% (Dense)

63.5% (Non-dense)

Location 60.63% (Central)

39.37% (Peripheral)

Functional
indices

IOP 15.12 ± 6.88 mmHg

UCVA 0.77 ± 0.44 (logMAR)

A total of 160 participants from the CCPMOH database and 8 filtered variables
were included in the final SEM analysis. The mean age of the included
participants was 50.99 months ± 36.38 months, and 23.13% (n = 37) of our
patients had an abnormal pregnancy history. For the STR network, the mean
value of AL was 21.75 mm ± 2.06 mm; 55% (n = 88) of our patients had an
extensive area; 37.5% (n = 60) of our patients had dense opacity, and 60.63%
(n = 97) of our patients had opacity at central location. For the FUN network,
the mean IOP value was 15.12 mmHg ±6.88 mmHg, and the mean UCVA value
(logMAR) was 0.77 ± 0.44
AL Axial length, IOP Intraocular pressure, UCVA uncorrected visual acuity
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STR networks
The lesion area (−0.243), density (−0.57), and location
(−0.357) simultaneously had negative correlations with the
STR index. The AL variable had a positive correlation with
the STR index (0.615).

FUN networks
The presence of higher UCVA was positively associated
with a higher FUN index (0.571), suggesting that pa-
tients with higher UCVA will accordingly have better
visual functions. Furthermore, the IOP value was posi-
tively correlated with the FUN index (0.342). Because
the main range of the IOP is below 21 mmHg (normal
range), this result mainly reveals the functional support
role of IOP, which is necessary for visual maintenance.

Overall networks
A positive relationship in the model was the link
among the FUN (0.974) and STR indices (1.046) and
the overall network index, which indicates that func-
tion and structure are two of the main dimensions
for overall disease evaluation, with structure forming
the base of visual function (0.052). The age at diagno-
sis (0.753) was positively correlated with the overall
index, whereas an abnormal pregnancy experience

(−0.26) had a negative relationship with the overall
index. These results demonstrate that age is an im-
portant indicator for the visual maturation and that
an abnormal pregnancy experience will have a detrimental
influence on overall visual function.

Clinical interpretations
The results from SEM network quantifiably illuminate
the effect of eight potential factors (four risk factors:
area, density, location, and abnormal pregnancy ex-
perience; four beneficial factors: AL, UCVA, IOP
value, and age at diagnosis). For structural effect, ex-
tensive lesion area, dense opacity and central location
will present increasing severity of cataract but AL
growth will be a positive indicator for the better struc-
tural maturity. Furthermore, both UCVA and IOP
value in normal range presented beneficial functional
effect and could be the positive evaluation indicators
for patients. Additionally, patients with earlier diagno-
sis age and abnormal pregnancy experience will be the
indicators for a more severe status. All these identified
factors are also valuable references and indicators for
patients’ prognoses.

Discussion
It is imperative to study rare and complex diseases in a
systematic manner
Studying rare and complex disease is a great challenge
for researchers and medical practitioners [22]. Rare and
complex diseases tend to be caused by a system, with in-
terconnected entities being modeled as nodes and their
connections as edges to comprise an intricate pathogenic
network [23]. Therefore, it is always difficult for re-
searchers to explicitly elucidate the principle nosogenesis,
individual predisposition and related risk factors.
With the advance and popularization of medical

detecting and monitoring equipment, medical practi-
tioners should address an increasing number of

Table 3 Summary of statistics of the goodness-of-fit indices

Goodness-of-fit index Results

χ2 (Chi-square value) χ2 = 26.093, df = 16, P = 0.1113

RMSEA 0.053, P = 0.422

CFI 0.995

TFI 0.992

WRMR 0.781

The overall fit of the measurement and the structural models was satisfactory
(χ2 = 26.093, df = 16, P = 0.1113; RMSEA = 0.053, P = 0.422; CFI = 0.995;
TFI = 0.992; WRMR = 0.781)
RMSEA Root mean square error of approximation, TLI Tucker- Lewis index, CFI
Comparative fit index, WRMR Weighted residual root mean square residual

Table 4 Modeling estimation indices of the SEM constructs

Variables Coefficient estimates value Standardized coefficient estimation Standard error P value

Structural indices AL 1.000 0.615 - -

Area −0.203 −0.243 0.092 0.027

Density −0.543 −0.570 0.106 0.000

Location −0.308 −0.357 0.107 0.004

Functional indices IOP 1.000 0.342 - -

UCVA 0.054 0.571 0.033 0.098

Overall index by STRI 1.000 1.046 - -

FUNI 1.785 0.974 0.493 0.000

Overall index on Age at diagnosis 0.027 0.753 0.004 0.000

Abnormal pregnancy history −0.787 −0.260 0.266 0.003

AL Axial length, IOP Intraocular pressure, UCVA uncorrected visual acuity, STRI Structural indices, FUNI Functional indices
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clinical indices. However, quite a few examinations or
clinical indices seem to be unnecessary or to provide
ambiguous information for the diagnosis and the
treatment decision, which is contrary to the goals of
precision medicine [24, 25]. Therefore, it is imperative
to uncover the interrelationship and the effectiveness
of these potential clinical indices and risk factors and
to integrate these elements to construct a holistic net-
work capable of providing insights into rare disease
evidence-based prevention and treatment.
To obtain sufficient evidence and data for rare dis-

eases, we established the CCPMOH program and built
a rare disease data integration platform [11]. Medical
history, multiple structural indices, and comprehen-
sive functional metrics were collected for the primary
investigation. After pre-modeling, a total of 8 filtered
variables were selected and included in the final SEM
modeling.

Implications from filtered variables: abnormal pregnancy
history may be the principle risk factor among medical
history for pediatric cataracts
Rare diseases, including pediatric cataracts, are always
associated with birth defects [26]. However, pediatric
cataracts present great genetic heterogeneity, and a
considerable proportion of pediatric cataracts should be
considered in the context of interactions among the
environment and heredity [27]. Among the 8 filtered
variables, abnormal pregnancy history was included but
family hereditary history and abnormal parturition his-
tory were excluded from the final network. In addition
to the final network contribution, these results indicate
that abnormal pregnancy history may be the principle risk
factor for pediatric cataracts. Previous studies reported that
pediatric cataracts had an association with rubella infection
[28, 29], which was in agreement with our findings on the
abnormal pregnancy history. Therefore, more attentions

Fig. 2 The standardized SEM architecture and interrelationships of the constructs. a The overall network exhibited a positive correlation with the
FUN (0.974) and STR indices (1.046). The age at diagnosis (0.753) was positively correlated with the overall index, while an abnormal pregnancy
experience (−0.26) exhibited a negative relationship with the overall index. b The lesion area (−0.243), density (−0.57) and location (−0.357) were
all negatively correlated with the STR index. Meanwhile, the AL variable has the positive correlation with the STR index (0.615). c, Increased UCVA
was directly associated with a higher FUN index (0.571), and the IOP value was positively correlated with the FUN index (0.342). AL Axial length,
IOP Intraocular pressure, UCVA uncorrected visual acuity, BCVA best-corrected visual acuity, STR Structural indices, FUN Functional indices,
OVE Overall indices
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should be focused on patients with abnormal preg-
nancy history in screening and early diagnostics of
pediatric cataract.

Our results are concordant with conventional medical
knowledge and validate the reliability of the SEM network
To systematically model our clinical indices, we clas-
sified our records into two separated latent variances
(structural indices or function indices) for two-layer
SEM construction. Two essential steps are needed for
the SEM clinical interpretation. First, we should holis-
tically evaluate the SEM network using existing evi-
dence and the clinical consensus. Our results indicate
that the functional and structural networks have posi-
tive support from the overall network and that the
structural network has a positive supporting effect on
the functional network. Additionally, the lesion area,
density and location have a negative effect on the
structural network, and UCVA is a positive indicator
for the functional network. These results are concord-
ant with conventional medical knowledge and validate
the reliability of the SEM network.

Implications from SEM network index: the risk or beneficial
effects of the potential factors are confirmed to provide
insights into rare disease prevention and treatment
After verifying the reliability of the model in the pre-
liminary test, the second step is to explain the model
and provide novel and valuable clinical information.
For the structural network, AL presents a positive effect
in our study population. The main study population
was younger than 2 years of age; thus, in the early
stage, increasing AL is a beneficial indictor for eyeball
development instead of myopia progression. For the
functional network, the IOP plays as a supporting role,
which reveals that an IOP in the normal range (the
main range of our IOP is below 21 mmHg) is not a risk
factor for glaucoma but instead is a supporting factor
for visual function and a positive nutrient media for the
functional component. For the overall network, age at
diagnosis is also a positive indicator, which demon-
strates that the severe pediatric cataract is more likely
to be diagnosed in the early stage. These implications
could be an important supplement to the mainstream
theory of pediatric cataract.

Implications from weight of index: AL, density, UCVA and
age at diagnosis served as the dominant factors and
might be emphasized in our regular clinical practice
The weight of each index is also valuable information
for the clinical interpretation. For the structural net-
work, AL and density are the dominant factors and can
be considered key indicators for severity and prognosis.
For the functional network, UCVA plays the main role

along with the subordinate beneficial effect from the
IOP. The functional and structural networks almost
equally provide a contribution to the overall network.
Furthermore, the age at diagnosis is more crucial than
an abnormal pregnancy experience in the overall net-
work. Therefore, AL, density, UCVA and age at diagno-
sis might be emphasized in our regular clinical practice.

Acceptable fitting of SEM network and study limitation
We performed the goodness-of-fit validation to ensure
the meaning and reliability of the SEM network. The key
indicators, χ2-values and RMSEA indicated an accept-
able fit of the data to our model along with the TFI, CFI,
and WRMR, which supported the same conclusion. Al-
though the modeling reliability of our variables was not
sufficiently ideal to show great explanation power, the
overall fitting of the SEM network is acceptable.
The main limitation of our study is the data quality.

Two main effects (missing data and inevitable errors)
caused by data quality are introduced as follows. Missing
data will directly influence the model fitting; thus, the rea-
son for the exclusion of the primary indices should not be
merely interpreted by their limited or subordinate effect
on disease. Notably, some valuable indices might be
excluded by the effect of the missing data. Moreover, the
missing data could be a possible explanation for the unsat-
isfactory modeling reliability. Additionally, uncooperative
measurement is common for our regular examination
procedure because the majority of our patients are under
2 years of age, which causes fairly inevitable measuring
errors. Furthermore, the VA evaluation is a somewhat
subjective measurement and the medical history is a retro-
spective inquiry, which might present less accuracy. Our
future study aims are to include a more dimensional and
more complete rare disease dataset with a larger sample
size for modeling and data mining.

Conclusions
In conclusion, our study proposed a feasible pattern for
data mining using a rare disease dataset. We integrated
the multidimensional dataset and constructed a two-
layer SEM network to identify valuable clinical indices
and uncover the interrelationships and the effectiveness
of these potential factors. Four risk factors and four
beneficial factors were filtered and confirmed with reli-
able clinical implications. This research could promote
rare disease research and prevention to substantially
benefit rare disease patients.

Additional file

Additional file 1: The detailed information for potential variables and
evaluation indices are presented. (DOCX 16 kb)
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