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Fundus images analysis using deep
features for detection of exudates,
hemorrhages and microaneurysms
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Abstract

Background: Convolution neural networks have been considered for automatic analysis of fundus images to
detect signs of diabetic retinopathy but suffer from low sensitivity.

Methods: This study has proposed an alternate method using probabilistic output from Convolution neural network
to automatically and simultaneously detect exudates, hemorrhages and microaneurysms. The method was evaluated
using two approaches: patch and image-based analysis of the fundus images on two public databases: DIARETDB1 and
e-Ophtha. The novelty of the proposed method is that the images were analyzed using probability maps generated by
score values of the softmax layer instead of the use of the binary output.

Results: The sensitivity of the proposed approach was 0.96, 0.84 and 0.85 for detection of exudates, hemorrhages and
microaneurysms, respectively when considering patch-based analysis. The results show overall accuracy for DIARETDB1
was 97.3% and 86.6% for e-Ophtha. The error rate for image-based analysis was also significantly reduced when
compared with other works.

Conclusion: The proposed method provides the framework for convolution neural network-based analysis of fundus
images to identify exudates, hemorrhages, and microaneurysms. It obtained accuracy and sensitivity which were
significantly better than the reported studies and makes it suitable for automatic diabetic retinopathy signs detection.

Keywords: Fundus image analysis, Diabetic retinopathy, Deep learning, Convolutional neural networks, Image
processing

Background
Diabetic retinopathy (DR) is a leading cause of vision
impairment and irreversible blindness in middle-aged
and elderly people [1, 2] and is expected to rise to 191
million by 2030 [3–5]. Vision impairment due to DR can
be significantly reduced if it is diagnosed in the early
stages. It is diagnosed by visual examination of retinal
images to detect three most common pathological signs
i.e. (i) exudate (ii) hemorrhage and (iii) microaneurysm
[6]. However, this is a manual time-consuming proced-
ure and outcomes are subjective and dependent on ex-
pertise, thus, there is potential bias of the examiner. The
diagnosis can be performed by analysis of color fundus
images or fluorescein angiograms (FA) to identify patho-
logical signs. Although FA enables better differentiation

between microaneurisms and micro hemorrhages, due
to its invasive nature along with costs and the risk of al-
lergic reactions, fundus images are the preferred modal-
ity. For automatic detection of pathological signs, most
computer-based studies have developed algorithms for
the automatic analysis of the fundus images with the
aim to make the diagnosis more objective and easier to
access by people in remote communities. However, this
is very challenging because of variation in size, color,
texture and shape of these signs (Fig. 1).
In computer-based methods, detection of exudate,

hemorrhage and microaneurysm can either be done sep-
arately for each signs [7–23] or all signs simultaneously
[24–31]. For exudate detection, Sánchez et al. [32] used
a statistical mixture model-based clustering for dynamic
thresholding to separate exudate from background. The
algorithm obtained sensitivity of 90.2% and 96.8% for* Correspondence: Dinesh@rmit.edu.au
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lesion and background, respectively. Giancardo et al. [7]
proposed a method based on color and wavelet decompos-
ition features from exudate candidates to train classifiers.
They achieved the best result using support vector machine
(SVM) classifier with areas under the receiver operating
characteristics (AUC) between 0.88 and 0.94, depending on
different datasets. In 2017, Fraz et al. [8] developed a
method to detect exudate based on the multiscale segmen-
tation. They used combination of morphological recon-
structions and Gabor filter banks for feature extraction
followed by bootstrap decision tree for classification of ex-
udate pixels. In 2018, Kaur and Mittal [3] used a dynamic
thresholding method for detection of exudate boundaries.
The algorithm obtained sensitivity of 88.85% and 94.62% in
lesion-based and image-based, respectively.
Hemorrhage detection was reported by Tang et al. [11]

who divided the image into small sub-images (also called
splats) for extracting splat features such as texture, splat
area, and color. They evaluated their method based on
patch and image level analysis and obtained AUC 0.96
and 0.87, respectively. For automatic detection of micro-
aneurysm, Walter et al. [14] used morphological opera-
tions and kernel density estimation to extract a feature
vector applied to a KNN, Gaussian and Bayesian
risk-minimizing classifiers; their method achieved an ac-
curacy of 88.5%.
In the past few years, deep learning approaches have

been considered for this application and in 2016, Grinsven
et al. [13] presented Convolutional Neural Network
(CNN) architecture for detecting hemorrhage with nine
layers trained by the selective misclassified negative

samples. Their algorithm obtained AUC of 0.89 and 0.97
for two different datasets. In 2016, Shan and Li [15] used a
patch-based analysis method to detect microaneurysm
and applied a stacked sparse auto-encoder to distinguish
between those two groups and they obtained 91.38%
accuracy.
The success of diagnosis of DR requires the detection of

all the three signs: exudate, hemorrhage and microaneur-
ysm. While some of the studies reported earlier achieved
acceptable performance for detection of single patho-
logical sign, they were not suitable for identification of all
the three signs simultaneously. Agurto et al. [26] used
multiscale amplitude-modulation-frequency-modulation
(AM-FM) method for extracting texture features from
segmented retinal images to differentiate between groups
with and without DR. To distinguish between these two
groups, they computed distance metrics between the tex-
ture features. While they identified the segments with DR
signs, the method did not discriminate between the three
DR signs, which is essential for treatment planning. In
2017, Tan et al. [24] proposed a ten layers CNN architec-
ture for DR sign detection. Their proposed network
achieved a sensitivity of 0.87 for exudate detection, but
this was only 0.62 and 0.46 for detection of hemorrhage
and microaneurysm, respectively. Another limitation of
this study was that they detected individual patches but
did not consider the entire image which may explain the
poor sensitivity due to misclassification of the background
(with no pathological sign). Table 1 compares perform-
ance of the pervious methods for detection of exudate,
hemorrhage and microaneurysm.

Hemorrhage

Microaneurysm

Exudate

Fig. 1 Example of Retina Images containing three DR sings. This image shows an entire retina image with haemorrhage, microaneurysm and
exudate labled by graders, and which was then cropped to illustrate individual patch
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The patch-based analysis has been commonly used for
CNN-based retinal image analysis [24, 33]. However, this
approach can lead to disparity in the size of the sign due
to patch size [24], and the inexact evaluation because of
the focus on the pathological signs without considering
the neighborhood and the background. While there are
studies that have separated the background from the
microaneurysm, and there are other studies that have ac-
curately contoured the exudate, these perform analysis
for one sign rather than all 3. Such an approach can lead
to the detection with overlaps between the three signs.
Another shortcoming is that while there are a number
of isolated techniques that perform image enhancement,
detect the presence of DR signs and perform processing
to contour the signs, there is no framework that covers
all the aspects.
In this study, the framework for a complete CNN-based

system has been described for automatic and simultan-
eous detection and segmentation of exudate, hemorrhage
and microaneurysm from fundus images. A ten-layered
CNN architecture was designed and trained using images
with annotated patches corresponding to the three signs
and the background (No-sign) which was then used to ob-
tain probability maps corresponding to each category (i.e.
three sign and background). A post-processing algorithm
was developed to differentiate pixels corresponding to a
type of pathology from similar-looking cluttered pixels.
Receiver Operating Characteristic (ROC) curve analysis
was used to find a suitable threshold for differentiating be-
tween different types of pathologies This proposed frame-
work was evaluated for both, patch and image-based

analysis. Two publicly available databases were used, one
was used for training while both were used for evaluation
of the proposed method. The performance of the algo-
rithm with and without probabilistic analysis was mea-
sured by taking the mean accuracy of ten repetitions.

Materials
In this study, two public databases were used: 1- DIA-
RETDB1, 2- e-Ophtha with total of 284 fundus images.
Seventy-five images from DIARETDB1 were used for
patch-based analysis, while 209 images were used for
image-based analysis.

DIARETDB1
DIARETDB1 database consists of 89 color retinal images
with resolution 1500 × 1152 pixels [34]. Out of this
database, 75 images were used for training the CNN
while the remaining 14 images were used for testing and
validating the performance of this method. In the train-
ing data, exudate, hemorrhage and microaneurysm were
manually contoured by an experienced grader.

e-Ophtha
e-Ophtha is made up of two subsets: (i) “e-Ophtha EX”
which contains 47 color retina images with annotated
exudate, (ii) “e-Ophtha MA” which has 148 color retina
images with annotated microaneurysm [35]. In this data-
base, there is a variation in the size and resolution of the
images, ranging from 1440 × 960 to 2544 × 1696 pixels.
All images were resized to the size of the DIARETDB1
(1500 × 1152 pixels).

Table 1 Comparison between performance of the pervious methods for detection of exudate, hemorrhage and microaneurysm

Methodology Exudate Hemorrhage Microaneurysm

sensitivity specificity sensitivity specificity sensitivity specificity

Tan et al. [24] 0.87 0.98 0.62 0.98 0.46 0.97

Sinthanayothin et al. [29] 0.88 0.99 0.77 0.88 0.77 0.88

Grandet et al. [30] 0.94 – 0.89 – – –

Naqvi et al. [43] 0.92 0.81

Walter et al. [23] 0.92 – – – – –

Fraz et al. [8] 0.92 0.81 – – – –

Sopharak et al. [18] 0.82 0.99 – – – –

Prentašić et al. [44] 0.78 – – – – –

Welfer et at. [17] 0.7 0.98 – – – –

Niemeijer et al. [21] – – 0.31 – 0.31 –

Fleming et al. [20] – – – – 0.63 –

Walter et al. [14] – – – – 0.88 –

Garcia et al. [28] – – 0.86 – 0.86 –

Quellec et al. [19] – – – – 0.89 –

Bae et al. [16] – – 0.85 – – –

Walter et al. [14] – – – – 0.88 –
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Methodology
The proposed framework consists of two main phases:
1) patch-based and 2) image-based analysis. The images
were enhanced and then segmented in patches which
were manually annotated and used to train the CNN.
This trained CNN was used to analyze the other images
for each pixel and a probability map was created using
with which the locations of the pathological signs were
identified. These images were processed to remove the
isolated signs because these were noise and the spread
of the signs which occurs during the earlier stages. The
resultant images were compared with the manually an-
notated images to determine the accuracy of this
method. An overview of the proposed method is shown
in Fig. 2 and the steps are described below.

Preprocessing
Contrast enhancement (CE) technique was used in this
study to enhance the contrast between three DR patho-
logical signs and background. In this study, the first step
was to process the images using image enhancement
technique [13, 36] described in eq. (1).

ICE ¼ αI x; yð Þ þ βG x; y; σð Þ � I x; yð Þ þ μ ð1Þ

where, I(x, y) is the raw image, ICE the enhanced image, ∗
represents the convolution operator, G(x, y; σ) is a

gaussian filter with the scale σ. The values of the α, β, σ
and μ were chosen as 4, −4, 300/30 and 128, respectively
based on the works by Van Grinsven [13]. This repre-
sents the subtraction of the Gaussian filtered image from
the original image and highlights the contrast while
μ gives a baseline shift of the gray scale. The result of
image enhancement has been shown in Fig. 3 that re-
vealing that some new lesions can be singularized by
image enhancement, as specified by the yellow marks.

Convolutional neural network
The enhanced images were segmented into patches of
size of S × S which were labeled based on the ground
truth images corresponding to the three pathological
signs: exudate, hemorrhage, microaneurysm and back-
ground (without any pathological sign). These patches
were the input to the CNN which was trained against
the target labels. The choice of CNN architecture and
the parameters have been described in Fig. 4.
In the proposed CNN, four convolutional layers were

designed with 16 feature maps in each convolutional
layer by the kernel size of 3 × 3 pixels. To avoid satur-
ation, the rectified linear unit (ReLU) was employed in
this study. The size of feature maps was reduced using
Max-Pooling (MP) layer with a kernel size of 2 × 2 and
the values were normalized by the normalization layers
(NL) after each MP layer for faster convergence. Sixteen

Train retinal 
Dataset

Annotated Images  

Patch Preparation CNN

Loss Function

Patch-Based Analysis

Preprocessing

A test retina 
image

Patch Preparation CNN Probability Map Post-Processing

Image-Based Analysis

Preprocessing

Weights

Segmented image 
output

Fig. 2 Overview of the proposed framework contains two main phases: 1) patch-based and 2) image-based analysis. The patch-based section
corresponds to training and testing a CNN model to discriminate between the different DR signs. Image-based analysis of the entire image
generates probability maps for each sign
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features were extracted from the last MP layer and fed
to a fully-connected (FC) layer with 256 neurons, the
output of which was given to the final stage which had
four neurons corresponding to the four target classes.
To avoid overfitting, drop-out algorithm with a ratio of
0.5 was used in our net design. θ = {Wi, bi} defined as
network parameters, where w and b correspond to
weight and bias in the C and FC layers. For the training
process, the loss function of Lc was defined as follows:

Lc ¼ −
1
Cj j

XCj j

i¼1

ln p DijCi
� �� � ð2Þ

where |C| represents the number of items in the training
data, Ci and Di denote the ith training sample and its

label, respectively. To update θ parameters, stochastic
gradient descent (SGD) method was used as in:

θ pþ 1ð Þ ¼ θ pð Þ−γ ∂Lc

∂θ
þ ϑΔθ pð Þ−аγθ pð Þ ð3Þ

where γ, ϑ and а denote learning rate, momentum rate
and weight delay rate, respectively.

Image analysis
In this study, pixel-based analysis of the image was per-
formed by taking a patch of size S × S centered around
pixel (xi, yi). This patch is the input to trained CNN
which gives membership probabilities (range 0 to 1) at
location (xi, yi) for the three pathological signs: i.e. exud-
ate, hemorrhage and microaneurysm (shown by PE,xi,yi,

a b
Fig. 3 Applying the image enhancement technique on an example retina image. (a) Original retina image; (b) After image enhancement. This
shows that some new lesions can be singularized by image enhancement shown by yellow annotations)
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Fig. 4 Hierarchical architecture of the proposed CNN. I: input image, C: convolutional layer, FM: feature map, MP: max pooling, NM: Normalization
layer, FC: fully-connected layer
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PH,xi,yi and PM,xi,yi). Consequently, three probability maps
for the image are created and the scheme of this map-
ping process is shown in Fig. 5.
To identify the signs, a threshold was determined

for each of the probability maps. This threshold (Th)
was obtained by maximizing the receiver operating
characteristics curve and used to binarize each prob-
ability map and obtain a binary map corresponding to
the three signs. Overlaps were avoided by ranking the
points with overlap based on the probability values.
Details of this procedure are provided in section
“Experiments”.
One difficulty that is faced by such methods is the

appearance of redundant boundaries and cluttered pixels
(False positive pixels) around the segmented signs. To
overcome this shortcoming, three morphological
operations: closing, opening and erosion were performed
with masks of size 5 × 5, 5 × 5 and 4 × 4 pixels, respect-
ively [37, 38]. This was followed by a rule based

post-processing where signs with area of less than S2

4

were removed.

Validation parameters
The performance was evaluated based on false positive
(FP), true positive (TP), true negative (TN) and false
negative (FN) rates [39] (Table 2).
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Fig. 5 Process of generating three probability maps corresponding to exudate, hemorrhage and microaneurysm from a retina image. By taking a
patch of size S × S centered around pixel (xi, yi), each patch is fed to the trained CNN that determines the membership probabilities at location
(xi, yi) for the three pathological signs: i.e. exudate, hemorrhage and microaneurysm (shown by PE,xi,yi, PH,xi,yi and PM,xi,yi)

Table 2 Validation parameters

Parameter Equation

Accuracy TPþTN
TPþTNþFPþFN

Error rate FPþFN
TPþTNþFPþFN

Positive predict value (PPV) TP
TPþFP

Sensitivity TP
TPþFN

Specificity TN
TNþFP
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Experiments
Data preparation
The image was segmented into patches by the size of
S × S, with S = 50,which was determined based on the
smallest pathological signs in these images. Patches cor-
responding to the signs were manually extracted from
75 retina images of the DIARETDB1 database and used
for the training the network. These resulted in 22,719,
18,882 and 17,824 patches for exudate, hemorrhage and
microaneurysm and 50,518 patches with no pathological

a

b

c

d
Fig. 6 Patch examples corresponding to the four classes; (a) exudate. b hemorrhage. c microaneurysm. d no-sign

Table 3 Statistics information of sign patches

Exudate Haemorrhage Microaneurysm No-Sign

Training 15,646 13,339 12,477 35,013

Validation 3353 2859 2674 7503

Test 3720 2684 2333 8002

Total Number 22,719 18,882 17,484 50,518

Table 4 CNN setup details

CNN parameters Optimal value

Learning Rate 0.01

Momentum 0.9

Gaussian Weight Filters 0.01

Training Batch size 128

Validation and Test Batch size 32

Solver Method SGD

Gamma 0.1

Policy of the SGD Step-Down

Step size of SGD 33
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signs (No-Sign). The No-Sign patches contained vessels,
background tissue and optic nerve head. There was
no overlap between each to adjacent patch. To in-
crease the robustness of the algorithm, data augmen-
tation was performed using both horizontal and
vertical filliping and rotating [40, 41]. Figure 6 shows
patch examples corresponding to four classes and
Table 3 summarizes the number of patches consid-
ered for the training (75%), validation (15%) and test-
ing (15%) CNN.

Network setup
For training the CNN, optimal parameters were heuris-
tically set and shown in Table 4.
The maximum number of epochs was identified by

repeating the training from 0 to 100 epochs and re-
cording the accuracy and error using the validation
set. It was observed that the accuracy saturated after
43th epoch to 90% and hence was selected as the
maximum number of training epochs (Fig. 7). Using a
GeForce GTX 1070 and Caffe platform [42] for the
CNN implementation, the training process took
8 min and 23 s.

Image analysis
The test image set of DIARETDB1 and all images of
e-Ophtha were used to evaluate the performance of the
proposed method using image-based analysis. These im-
ages were analyzed (section “Materials”) and the
probability map was created of the all pixels in the image
which resulted in three probability maps corresponding
to exudate, hemorrhage and microaneurysm. Figure 8
shows an example with the three probability maps.
Figure 9 shows the images after applying post-processing
(in section “Image analysis”). It can be seen that the
algorithm’s outcome accurately segmented the actual
pixel’s signs from the all pixels which were assigned as
potential pixels for the signs with different probability.

Results
For the patch-based evaluation, the mean results of ten
repetitions for the training are described in Table 5 and
Fig. 10 shows the ROC curve for the CNN performance.
Table 5 shows the sensitivity, specificity and accuracy

for the proposed method. The best results were for the
exudates with sensitivity, specificity and accuracy of
0.96, 0.98 and 0.98, respectively, while that for

Fig. 7 Relationship between number of training epochs with accuracy over 100 epochs. It is observed that the accuracy saturated after 43th
epoch to 90% and hence was selected as the maximum number of training epochs
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Fig. 8 Three probability maps were generated from an example retina image: (a) original retina image; (b) Exudate probability map; (c) Hemorrhage
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Fig. 9 Three examples of pathological signs before and after post-processing. a Original image. b Probability map corresponding to the sign. c Image
output after post-processing
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hemorrhages was 0.84, 0.92 and 0.90, and 0.85, 0.96 and
0.94 for microaneurysm.
For image-level evaluation, performance of the pro-

posed method was compared to the method which
used the binary outputs of the network for both data-
sets and shown in Fig. 11. It is observed that for
DIARETDB1, the proposed method achieved the
accuracy of 0.96, 0.98 and 0.97 and error rate of 3.9%,
2.1% and 2.04% for segmentation of exudate, hemorrhage
and microaneurysm, respectively which shows that this
technique outperforms techniques reported in literature.
Similarly, there was significant improvement for exudate
and microaneurysm detection in the e-Ophtha dataset
with accuracy of 0.88, and 3.0 and error rate of 4.2% and
3.1%, respectively. Figure 12 shows example of a retinal
image with pathological signs detected by the proposed
algorithm.

Discussion
This study has presented a CNN-based framework to
analyze the retina fundus images for detection of patho-
logic signs indicative of DR: exudate, hemorrhage and
microaneurysm. The images were first pre-processed to
enhance the contrast and then segmented in patches
which were then manually annotated and used for train-
ing the CNN network. This network was then used to
determine the probability for each pixel to belong to the
four classes of exudate, haemorrhage, microaneurysm,
and background (no pathologic sign). The resultant
probability map was then used to determine the loca-
tions of all the three types of pathological signs corre-
sponding to DR. The isolated signs and the spread due
to convolution were automatically removed in a
post-processing step described earlier.
The results show that there was a difference in the ac-

curacy, sensitivity and specificity when using the two
databases: DIARETDB1 and e-Ophtha which could be be-
cause the CNN was trained using only DIARETDB1.
Compared to previous works in which the two databases
were used (Table 1), the performance of the proposed
approach was higher. It also observed that average sensi-
tivity and specificity for detecting exudates (0.96 and 0.98)
is higher than for hemorrhage and microaneurysm.
According to Table 1, most of the previous studies suffer
from poor sensitivity, particularly for discrimination

Table 5 Sensitivity, specificity, accuracy and PPV of the
proposed method in patch-level evaluation for detection of
exudate, hemorrhage and microaneurysm

Exudate Hemorrhage Microaneurysm No-Sign

Accuracy 0.98 0.90 0.94 0.96

Sensitivity 0.96 0.84 0.85 0.95

Specificity 0.98 0.92 0.96 0.97

PPV 0.94 0.85 0.83 0.96
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Fig. 10 ROC curve corresponding classification of the four classes (exudate, hemorrhage, microaneurysm and no-sign)
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between hemorrhages and microaneurysms. Compar-
ing our results with the work by Tan et al. [24] shows
that our method achieved significantly better sensitiv-
ity for detection of hemorrhage (0.84 vs 0.62) and
microaneurysm (0.85 vs 0.46), although the specificity
is similar. Our method also obtained better perform-
ance for both, sensitivity and specificity, for detection

of the three DR signs when compared to the work by
Sinthanayothin et al. [29].
Our method simultaneously detects the three

pathological signs with improved performance com-
pared to previous studies where only one sign was
considered. This makes it suitable for more reliable
detection of DR because when the signs are

D
IA

R
E

T
D

B
1

E
-O

ph
th

a

 Probability Map Binary Output

0 2 4 6 8

Exudate

Hemorhhage

Microaneurysm

Error rate (%)

0.9 0.92 0.94 0.96 0.98 1

Exudate

Hemorhhage

Microaneurysm

Accuracy (%)

0 2 4 6 8 10

Exudate

Microaneurysm

Error rate (%)

0.75 0.8 0.85 0.9

Exudate

Microaneurysm

Accuracy (%)

Fig. 11 Performance of proposed framework for the sign detections using two databases (DIARETDB1 and e-Ophtha) compared to the method
with binary outputs of the network

a b
Fig. 12 Segmentation output image of the example retina image. a Manually annotated images that exudate, hemorrhage, and microaneurysm
signs marked by blue, green and pink color, respectively. b Segmented output by the proposed algorithm
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identified individually, there is the potential error of
identifying the same region for multiple signs. This
method performs comprehensive analysis and detects
all the three signs simultaneously. The other study that
attempted the simultaneous detection of the three
signs was by Tan et al. [24] which suffered from poor
performance.
One innovation of this method is the use of score

values obtained from the softmax layer instead of
using the binary output of the network. This results
in the generation of the probability map of the loca-
tions of the pathological signs on the image, which
with suitable post-processing reduces the error rate in
the size of the signs.
The first significant strength of this study the signifi-

cant strength of the study is that we considered two
different publicly available databases, with the training
done on one and the testing on both with comparable
results. The second strength of this study is that fundus
images were analyzed using both, patch and image-based
analysis, and the results show that this method is signifi-
cantly better than other studies. The third strength is
that this method simultaneously identifies the three dif-
ferent pathological signs on the images which makes it
suitable for automatic detection of diabetic retinopathy
because when the signs are identified individually, there
is potential error when the same region is identified for
multiple signs.
A limitation of this study is that it is unable to differ-

entiate between hemorrhages and microaneurysms if
there is an overlap between these. This is also a limita-
tion of the dataset because overlaps in the original im-
ages have not been labeled. Another limitation is that
the database of 284 images was imbalanced with very
few images with hemorrhages. There is the need for fur-
ther testing of this method for databases belonging to
different demographics to determine the suitability for
different societies.

Conclusion
This paper reports a CNN based framework for the
analysis of retinal images to detect the three major
signs of diabetic retinopathy: exudates, hemorrhages
and microaneurysms. The novelty of this system is
that it uses the softmax output of the layers to gener-
ate the probability map for the three pathologic signs
of DR which is then used to segment the fundus
image and identify the signs. The system was trained
using one dataset and tested on two datasets which
shows the universality of the approach. The results
show that such a system can be used for automatic
analysis of fundus images for the detection of diabetic
retinopathy without requiring a large dataset for
training the network.
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