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Abstract

Background: Traumatic optic neuropathy (TON) is a form of optic nerve injury that occurs secondary to trauma
and is etiologically associated with acute axonal loss with severe vision loss. Here, we reported longitudinal changes
in the peripapillary retinal nerve fiber layer (RNFL) and macular ganglion cell complex (GCC) using wide-field swept
source optical coherence tomography (SS-OCT) in two cases of TON and identified the source of the damage.

Case presentation: (Case 1) A 65-year-old man was admitted to the hospital due to an injury in the right eye (OD)
and was subsequently diagnosed with indirect TON. He was then treated with high-doses of intravenous steroids.
Wide-field SS-OCT was performed at the baseline and after 1 day, 2 days, 1 week, 1 month, and 4 months. The wide-
field deviation map detected thinning earlier in the macular GCC than in the peripapillary RNFL. (Case 2) A 63-year-
old man was admitted to the hospital with a fractured left maxilla-zygomatic complex attributed to blunt-force
trauma to the head and loss of vision in his left eye (OS). He was diagnosed with indirect TON and treated with
high-doses of intravenous steroids. Wide-field SS-OCT was performed at the baseline and after 1 week, 2 weeks, 2
months 5 months, and 7 months. The wide-field deviation map detected thinning earlier in the peripapillary RNFL
than in the macular GCC.

Conclusions: Wide-field SS-OCT facilitated the identification of various sequential progression patterns in patients
with TON. Furthermore, the area in which the structural damage was first detected was seen differently in the
peripapillary and macular deviation maps for each case. Thus, wide-field imaging, which includes the macular and
peripapillary areas, are useful in monitoring TON.
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Background
Traumatic optic neuropathy (TON) is a type of optic
nerve injury that occurs secondary to trauma and has been
etiologically associated with acute axonal loss with severe
vision loss [1]. Indirect TON refers to a variation of TON
that is caused by forces transmitted at a distance from the
optic nerve after blunt force trauma to the head. This type

of optic nerve injury is typically observed in the optic
canal [2]. Spectral-domain optical coherence tomography
(SD-OCT) has been widely used to measure structural
changes in the retinal layers, and this technology was used
to monitor several retinal diseases and optic neuropathies,
including TON [3–5].
Recently, a number of reports have suggested the inte-

gration of SD-OCT analyses of the peripapillary and
macular areas using an embedded software (PanoMap) or
a simultaneous interpretation of both areas to diagnose or
determine disease progression in glaucoma [6–8].
Changes in these two areas have also been reported in
other non-traumatic optic neuropathies [9, 10].
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Advancements in technology, such as swept-source OCT
(SS-OCT), have facilitated the use of wide-field to cover
both the peripapillary and macular areas [6, 11, 12].
A number of studies have clinically demonstrated

morphological changes in the thickness of the retinal
layer using OCT or scanning laser polarimetry in pa-
tients with TON [13–17]. However, only one study has
directly compared the thickness of the peripapillary ret-
inal nerve fiber layer (RNFL) with that of the macular
ganglion cell complex (GCC) after TON [13]; addition-
ally, to the best of our knowledge, wide-field scanning
with SS-OCT in TON has not been reported yet. Com-
paring the two areas may provide information about the
progression and pathophysiology of the disease. Here,
we reported longitudinal changes in the peripapillary
RNFL and macular GCC using wide-field SS-OCT in pa-
tients with TON and identified the area where the dam-
age was first detected.

Case presentation
(case 1)
A 65-year-old man was admitted to the hospital after he
presented with symptoms such as periorbital swelling
and bruising in the right eye (OD) caused by blunt force
trauma to the head. Despite his injury, he could ad-
equately perform the finger counting test and demon-
strated an intraocular pressure (IOP) of 17 mmHg in
OD. The slit lamp and fundus examination was normal.
His OD demonstrated mid-dilated pupil, along with rela-
tive afferent pupillary defect. Computed tomography did
not reveal any significant abnormalities, such as bone
fractures, except for swelling in the periorbital soft tis-
sue. Following the diagnosis of indirect TON, the patient

was immediately treated with high-dose intravenous ste-
roids (3000 mg of intravenous methylprednisolone in
total).
Wide-field SS-OCT was performed at baseline and

after 1 day, 2 days, 1 week, 1 month, and 4months. Dur-
ing the follow-up periods, his IOPs were within the nor-
mal range and no further complications occurred. The
wide-field thickness map revealed a gradual thinning of
the peripapillary RNFL and macular GCC. The wide-
field deviation map showed that thinning was detected
first in the macular GCC than in the peripapillary RNFL
(Fig. 1).

(case 2)
A 63-year-old man was admitted to the hospital with
fractured left maxilla-zygomatic complex caused by
blunt force trauma to the head. He complained about
loss of vision in his left eye (OS), and his visual acuity
permitted him to identify hand movements. The IOP in
his OS was 20 mmHg. The slit lamp and fundus examin-
ation was normal. The pupil was normal sized, and rela-
tive afferent pupillary defect was observed in OS.
Computed tomography showed normal optic nerve and
without any of the following features: displaced fracture
fragments compressing the optic nerve, hematoma,
bleeding in the ethmoid sinus spaces, cerebral injury,
and bone fracture in the optic canal. Following the diag-
nosis of indirect TON, the patient was immediately
treated with high-doses of intravenous steroids (3000 mg
of intravenous methylprednisolone in total).
Wide-field SS-OCT was taken at baseline and after 1

week, 2 weeks, 2 months, 5 months, and 7months. Dur-
ing the follow-up periods, IOPs were in the normal

Fig. 1 Serial wide-field optical coherence tomography angiography (OCT) of the right eye of 65-year-old man after injury. Identification of
progressive thinning in both the peripapillary retinal nerve fiber layer (RNFL) and macular ganglion cell complex (GCC) using a wide-field
thickness map. The wide-field deviation map shows that thinning is first detected in the macular GCC than in the peripapillary RNFL. Changes in
color (yellow and red) in the peripapillary RNFL at the 4-month time-point indicate RNFL thinning. The area marked red in the macular GCC at
the 1-month time-point indicates GCC thinning
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range, and no further complications occurred. The wide-
field thickness map revealed that the peripapillary RNFL
and macular GCC were thinning gradually. The wide-
field deviation map showed that thinning was detected
first in the peripapillary RNFL than in the macular GCC
(Fig. 2).

Discussion and conclusions
In this case report, we presented sequential structural
changes associated with TON in both the peripapillary
and macular areas over a wide-field area using SS-OCT
and identified the area where the damage was detected
first. The peripapillary and macular deviation maps re-
vealed differences in the area at which the structural
damage was first detected in the two cases. To the best
of our knowledge, this is the first study to report the se-
quential relationship with regard to the areas in TON.
A number of reports have suggested that retinal thin-

ning is detected in TON both at the peripapillary and
macular areas [13–17]. However, these studies did not
provide sufficient information regarding the area that
first demonstrated the damage in TON. One case report
that directly compared the thickness of the peripapillary
RNFL and GCC after TON demonstrated that the time
course of the reduction in the macular area was similar
to that observed in the peripapillary RNFL. The authors
of the same study suggested that the loss of retinal gan-
glion cells and related axons continued at rates similar
to those of the loss of axonal injury [13].
In the first case, the wide-field deviation map revealed

that structural damage was first detected in the macular
GCC than in the peripapillary RNFL. Unlike the name of

the disease (TON), which indicates that the main lesion
of the disease is concentrated in the optic nerve, retinal
thinning may first be detected in the macular area. Al-
ternatively, in the second case, wide-field deviation map
showed that thinning was detected earlier in the peripa-
pillary RNFL than in the macular GCC. In both cases,
the wide-field thickness map showed gradual thinning of
the retinal layer in both the peripapillary and macular
areas. However, wide-field deviation map, which com-
pared the measured thickness to the embedded norma-
tive database, demonstrated that the location where
damage is first shown differed depending on the cases.
Considering diseases such as glaucoma where it is im-

perative to have an accurate judgment of disease pro-
gression, several reports have recently investigated the
initial point from where the progression of the disease
originates and is subsequently detected [8, 18, 19]. Des-
pite several controversial evidences, Kim et al. reported
that early glaucomatous structural damage can be ob-
served earlier in the macular ganglion cell-inner plexi-
form layer (GCIPL) than in the peripapillary RNFL with
SD-OCT. [20, 21] TON is commonly caused by indirect
injury to the optic nerve, which is thought to be the re-
sult of a shock that has been transmitted from an orbital
impact to the intracanalicular portion of the optic nerve
[1]. Although the initial location of the lesion may be
different, both diseases are similar to an extent due to
the fact that an axonal injury, and not the retinal
ganglion cell, may be the point of origin. Therefore,
the structural damage associated with TON that was
observed in case 1 may also be detected first in the
macula.

Fig. 2 Serial wide-field optical coherence tomography angiography (OCT) of the left eye of 63-year-old man after injury. Detection of progressive
thinning in both the peripapillary retinal nerve fiber layer (RNFL) and macular ganglion cell complex (GCC) using a wide-field thickness map. The
wide-field deviation map shows that thinning is first detected in the peripapillary RNFL, followed by in the macular GCC. Color changes (yellow
and red) in the peripapillary RNFL from baseline to 7 months indicate progressive RNFL thinning. The area marked red in the macular GCC after 2
months indicates GCC thinning
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The deviation map visualizes the thinned area compar-
ing with the averaging normative database of the control
group, suggesting that the progression of damage over
time may differ depending on the baseline anatomical
variation in individual patients. In case 2, the structural
damage of TON was detected first in the peripapillary
area.
Recently, one group reported that functional damage

in TON was well correlated with the macular GCIPL
status [14]. In advanced glaucoma, evaluation of the
peripapillary RNFL was less clinically useful due to a
“floor effect” of the thickness of the RNFL With ad-
vanced loss, RNFL thickness never falls below 40 μm
due to the assumed presence of residual non-neuronal
tissues [22]. At this stage of the disease, evaluation of
the macular GCIPL using SD-OCT was considered to be
a more efficient tool to judge progression [23]. Similarly
in TON, OCT images of the macular area could be more
useful than those of the peripapillary area to evaluate the
functional aspects of the disease.
Wide-field OCT can simultaneously visualize the

thickness of the neural tissue in both the peripapillary
and macular areas. Therefore, wide-field OCT can be
used to specifically identify TON-associated nerve dam-
age and also to obtain information about the progression
of TON in a relatively wide area. Unfortunately, relation-
ship between the structural and functional impairments
could not be elucidated with only two cases and may be
understood in a future study with a larger sample size.
To conclude, in this case report, wide-field SS-OCT

allowed us to confirm various sequential progression
patterns in patients with TON, along with wide-field im-
aging of the macula and peripapillary areas, which are
useful to monitor TON.
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