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Abstract

Background: Structural changes of the choroid, such as choroidal thickening, have been indicated in amblyopic
eyes with hyperopic anisometropia as compared to fellow or healthy eyes. The purpose of the present study was to
investigate choroidal vascular density (CVD) in children with unilateral hyperopic amblyopia.

Methods: This study included 88 eyes of 44 patients with unilateral amblyopia due to hyperopic anisometropia
with or without strabismus and 29 eyes of 29 age-matched normal controls. The CVD of Haller’s layer was
quantified from en-face images constructed by 3-dimensional swept-source optical coherence tomography images
flattened relative to Bruch’s membrane. The analysis area was a 3 × 3-mm square of macula after magnification
correction. Relationships between CVD and other parameters [best-corrected visual acuity (BCVA), refractive error
and subfoveal choroidal thickness (SFCT)] were investigated, and CVDs were compared between amblyopic, fellow,
and normal control eyes.

Results: Mean CVD was 59.11 ± 0.66% in amblyopic eyes, 59.23 ± 0.81% in fellow eyes, and 59.29 ± 0.74% in normal
control eyes. CVD showed a significant positive relationship with SFCT (p = 0.004), but no relationships with other
parameters. No significant differences in CVD were evident among amblyopic, fellow, and normal control eyes after
adjusting for SFCT (p = 0.502).

Conclusions: CVD was unrelated to BCVA, and CVD did not differ significantly among amblyopic, fellow and
normal control eyes. These results suggest that the local CVD of Haller’s layer is unaffected in unilateral hyperopic
amblyopic eyes.
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Background
Amblyopia is defined as a disorder with dysfunctional
processing of visual information, such as reduced recog-
nition visual acuity (VA), resulting from either disuse
due to the absence of a clear image on the retina or mis-
use due to abnormal binocular interactions [1]. Trad-
itionally, morphological abnormalities have not been
considered present in the ocular structure of amblyopic
eyes. In contrast, recent studies using optical coherence
tomography (OCT) have shown structural changes to
the choroid such as thickening in hyperanisometropic
amblyopic eyes compared with that of fellow or healthy
eyes, independent of axial length (AL) [2–5]. In chorior-
etinal diseases such as central serous chorioretinopathy
[6] and Vogt-Koyanagi-Harada disease [7], the pathogen-
esis and clinical significance of choroidal structural
changes is relatively well understood, and OCT findings
are utilized for diagnosis and follow-up. In contrast, no
consensus has been reached regarding the pathogenesis
or clinical significance of choroidal structural changes in
patients with amblyopia.
Recently, a new method other than thickness has been

developed to evaluate choroidal structures, focusing on
choroidal vasculature using binarization analyses [8, 9].
Some studies have suggested changes in choroidal vascu-
lature in amblyopic eyes, but insufficient knowledge has
been accumulated [10–13]. The purpose of the present
study was thus to investigate the clinical significance of
evaluating choroidal vascular density (CVD) in patients
with amblyopia.

Methods
All investigative procedures adhered to the tenets of the
Declaration of Helsinki. This study was approved by the
Institutional Review Board Committee at Kawasaki Med-
ical School (registration number: 3473). This study was
designed as a retrospective observational case series and
was conducted from November 2013 to December 2018
in the Department of Ophthalmology at Kawasaki Med-
ical School Hospital. This study included minors under
16 years old among the patient sample. Informed con-
sent for all examinations was obtained from one parent
of each patient.

Subjects
Patients enrolled to this study showed unilateral ambly-
opia with decimal best-corrected visual acuities (BCVAs)
< 0.8 in the amblyopic eye and > 1.0 in the fellow eye at
the time of the first visit, due to hyperopic anisometro-
pia with or without strabismus; and age ≦ 18 years.
Hyperopic anisometropia was defined as hypermetropia
in both eyes and an interocular difference in refraction
(spherical equivalent) of > 1.5 diopters (D). Treatment
status was not considered at the time of performing

swept-source OCT (SS-OCT) in this study. Exclusion
criteria were as follows: presence of decimal BCVA in
amblyopic eyes > 1.0 within 2 months after full refractive
correction or at the time of SS-OCT; history of ocular
disease; history of intraocular surgery; or presence of
systemic diseases that may have exerted an influence on
the eye.
A total of 29 children were recruited as a normal con-

trol group. These children in the control group had a
decimal BCVA > 1.0 in both eyes, and no ocular or sys-
temic diseases other than mild refractive errors. Only
the right eye of the control group was used for data
analysis.
Ophthalmologic examinations performed in all sub-

jects included BCVA, cycloplegic refraction (measured
using a RKT-7700 auto-refractor; NIDEK, Gamagori,
Japan), AL (measured using an IOL Master OCT
biometer; Carl Zeiss Meditec AG, Jena, Germany), cover
test, extraocular movements, slit-lamp, fundoscopy, and
SS-OCT (DRI OCT-1 Atlantis; Topcon Corporation,
Tokyo, Japan). All SS-OCT examinations were per-
formed by the same author (S.A.) between 9:00 AM and
12:00 PM under nonmydriatic conditions.

Quantification of choroidal vascular density and
subfoveal choroidal thickness
CVD was quantified by binarizing the en-face image
with reference to the report by Fujiwara et al. [9]. The 3-
dimensional (3D) SS-OCT images, which covered a 12 ×
9-mm2 area with a scan density of 512 × 256, were
reconstructed as en-face images flattened with Bruch’s
membrane using dedicated software tools (EnView ver-
sion 1.0.1; Topcon Corporation). En-face images were
extracted at the level where the distance from the inner
surface of the choroid was 50% of the total subfoveal
choroidal thickness (SFCT) to examine the CVD of
Haller’s layer (Fig. 1a).
The analyzed region of CVD was a 3 × 3-mm square

centered on the fovea (Fig. 1b). The magnification error
was corrected using the Littman and modified Bennett
formulae, taking into account image magnification due
to AL variation [14, 15]. The extracted images were
binarized by Niblack’s method using ImageJ software
(version 1.51; National Institutes of Health, Bethesda,
MD), and the percentage of black area (considered to
represent the choroidal vascular area) in the total region
of interest was calculated as CVD (Fig. 1c).
SFCT was defined as the vertical distance from the

outer border of the hyperreflective line of retinal
pigment epithelium/Bruch’s complex to the choroidal-
scleral juncture at the subfovea. The SFCT was mea-
sured manually by S.A. from 3D SS-OCT images using
the built-in caliper tool. Subjects with images that were
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difficult to segment due to signal attenuation were ex-
cluded from the present study.

Statistical analyses
Data are presented as means ± standard deviations. For
statistical analysis, the decimal BCVA was converted to
the logarithm of the minimal angle of resolution
(logMAR).
First, multiple regression analysis of all eyes using the

forced entry method was performed with CVD as a
dependent variable, and logMAR, refractive error (RE),
and SFCT as independent variables to select those pa-
rameters to be corrected for comparisons of CVD. Be-
cause AL and RE are highly collinear and mutually
confounding variables [16], only RE was used for the
multiple regression analyses.
Second, a generalized linear mixed model (GLMM)

was used for CVD comparisons with measured eye (am-
blyopic, fellow, or normal control eyes) as a fixed factor,
individual subjects (amblyopic patients or healthy con-
trol children) and factors that were significant in mul-
tiple regression analysis as random factors. In addition,
logMAR, RE, AL, and SFCT were compared among am-
blyopic, fellow and normal control eyes. If a significant
difference was found by GLMM, pairwise comparison
was performed with Bonferroni correction.
The two-sample t-tests and chi-squared test were used

to compare age and sex ratio between patients with
unilateral amblyopia and normal control groups,

respectively. Pearson’s correlation analysis was used to
determine the coefficient of correlation between CVD
and logMAR in amblyopic eyes.
A value of p < 0.05 was considered statistically signifi-

cant. All statistical analyses were conducted using SPSS
Statistics version 20.0 (IBM Corporation, Somers, New
York, USA).

Results
Demographic data
This study enrolled 44 patients with unilateral hyperopic
amblyopia and 29 normal control individuals. All sub-
jects were Japanese. Table 1 shows demographic and
clinical data for all subjects. In the amblyopic group,
mean age at the time of SS-OCT was 6.8 ± 3.0 y (range,
3–18 y), and 29 patients (66%) were female. In the nor-
mal control group, mean age at the time of SS-OCT was
7.6 ± 3.1 y (range, 3–16 y), and 18 (62%) individuals were
female. No significant differences were evident between
amblyopic and normal control groups with regard to age
(p = 0.23) or sex ratio (p = 0.74).
Mean BCVA (logMAR) in amblyopic eyes was signifi-

cantly worse than that of fellow or normal control eyes
(p < 0.001, each), with no significant difference between
fellow and normal control eyes (p = 1.000). Mean RE in
amblyopic eyes was more hyperopic than that of fellow
and normal control eyes, and was more hyperopic in the
fellow eyes than in the normal control eyes (p < 0.001,
p < 0.001, and p = 0.003, respectively). Mean AL in

Fig. 1 Analysis of choroidal vascular density using binarized en-face images. a Three-dimensional swept-source optical coherence tomography
images were reconstructed as en-face images flattened with Bruch’s membrane. The yellow line shows where the subfoveal choroidal thickness is
50% level of total thickness. The white dotted-line shows the 3 × 3-mm square centered on the fovea after correction for magnification error
using individual axial length. b Extracted 3 × 3-mm square en-face image. c En-face image after binarization. The black area is considered to be
the choroidal vascular area, and the percentage within the region of interest is calculated as the choroidal vascular density
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amblyopic eyes was significantly shorter than in fellow
or normal control eyes (p < 0.001, each), with no signifi-
cant difference between fellow and normal control eyes
(p = 0.170). Mean SFCT was significantly thicker in am-
blyopic eyes than in fellow or normal control eyes
(p < 0.001, each ), with no significant difference between
fellow and normal control eyes (p = 0.302).

CVD
Mean CVD was 59.11 ± 0.66% in amblyopic eyes,
59.23 ± 0.81% in fellow eyes and 59.29 ± 0.74% in normal
control eyes (Fig. 2). Table 2 shows the results of mul-
tiple regression analysis of all eyes for CVD. SFCT was
significantly associated with CVD (standardized β =
0.307, p = 0.004). logMAR and RE were not associated
factors with CVD. No significant difference in mean
CVD was seen among amblyopic, fellow or normal con-
trol eyes with or without correction for SFCT (p = 0.502,

p = 0.505, respectively; GLMM). In amblyopic eyes, no
significant correlation existed between CVD and log-
MAR (r = 0.094, p = 0.545) (Fig. 3).

Discussion
The current findings showed that the CDV of Haller’s
layer, as analyzed by en-face OCT, did not differ signifi-
cantly among amblyopic, fellow and normal control eyes.
Also, no significant correlation was apparent between
CVD and BCVA in amblyopic eyes.
The choroidal structure has been implicated in the

pathogenesis of various ocular diseases. Agrawal et al.
recently reported that choroidal vascularity index (CVI:
the ratio of luminal area to total choroid area, equivalent
to CVD) is a robust marker for studying pathophysiol-
ogies of the choroid, because CVI is less variable than
SFCT and is not associated with most physiological vari-
ables [17]. In fact, studies in patients with Stargardt

Fig. 2 Box plot of the choroidal vascular density in amblyopic, fellow and normal control eyes. Cross symbols show the mean values. Circle
symbols show the outlier values which are more than 1.5 box lengths apart from either end of the box. There was no significant difference in the
choroidal vascular density among the amblyopic, fellow and normal control eyes with or without correction for subfoveal choroidal thickness
(amblyopic eyes vs. fellow eyes, p = 1.000, p = 1.000; amblyopic eyes vs. control eyes, p = 0.990, p = 0.963; fellow eyes vs. control eyes, p = 1.000,
p = 1.000; Bonferroni correction)

Table 1 Demographic and clinical data at SS-OCT measurements

AE (n = 44) FE (n = 44) Cont. (n = 29) p-value (AE vs FE) p-value (AE vs Cont.) p-value (FE vs Cont.)

Age 6.8 ± 3.0 7.6 ± 3.1 – – –

Sex (Male: Female) 15: 29 11: 18 – – –

Visual acuity (logMAR) 0.38 ± 0.22 − 0.13 ± 0.07 −0.12 ± 0.07 < 0.001a < 0.001a 1.000a

Refractive error (diopters) 5.32 ± 1.70 1.68 ± 1.31 0.46 ± 1.44 < 0.001a < 0.001a 0.003a

Axial length (mm) 21.00 ± 0.98 22.29 ± 1.06 22.77 ± 1.11 < 0.001a < 0.001a 0.170a

Subfoveal choroidal thickness (μm) 387.6 ± 78.4 298.3 ± 42.5 323.8 ± 69.1 < 0.001b < 0.001b 0.302b

Values are shown as mean ± standard deviation
AE amblyopic eyes, FE fellow eyes, Cont. normal control eyes
aBonferroni correction after GLMM
bBonferroni correction after GLMM corrected with axial length
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disease [18] and retinopathy of prematurity [19] have
found that CVI is a more sensitive biomarker than SFCT
and that a decrease in CVI is associated with a decrease
in BCVA. On the other hand, the present study observed
no specific changes in the CVD of amblyopic eyes, and
no correlation with BCVA, suggesting that CVD may
not be an adequate biomarker for evaluating visual acu-
ity loss in amblyopic patients. However, visual dysfunc-
tion in amblyopia can be evaluated using many
parameters other than visual acuity. For example, ambly-
opic eyes show poorer accommodative performance than
fellow or normal eyes [20]. Accommodation has been re-
ported directly related to choroidal structure [21].
Therefore, novel findings may be obtained by using indi-
ces other than BCVA (e.g., accommodation) in the in-
vestigation of the relationship between amblyopia and
CVD in the future.
Several reports have examined choroidal vascular

structures in patients with amblyopia [10–13]. In reports
using analyses by binarization of a single-section OCT
image, Nishi et al. found that the luminal area was sig-
nificantly larger and the stromal area was significantly
smaller in amblyopic eyes than in control hyperopic eyes

[10]. Another study showed a reduction in the luminal
area and widened stromal area after treatment only in
amblyopic eyes [13]. Beak et al. reported that the ratio of
choroidal luminal area to total choroidal area (i.e., CVD)
of amblyopic eyes showed different characteristics from
normal control eyes, such as amblyopic eyes showing
higher CVD that did not increase in direct proportion to
the increased choroidal thickness [12]. In contrast to
those previous reports [10, 12, 13], the present study did
not find any difference in CVD between amblyopic pa-
tients and normal healthy subjects. Our study extracted
en-face images at a fixed distance from Burch’s mem-
brane and analyzed the CVD. On the other hand, CVD
analysis using B-scan images, as used in previous studies
[10, 12, 13], is able to analyze only one cross-section
image, while allowing analysis of the structure of the
inner and outer layers of choroid simultaneously. Differ-
ences in results between these studies may thus be due
to differences in the methods used for CVD analysis.
On the basis of analyzing binarized en-face OCT im-

ages, Terada et al. reported that the outer choroidal vas-
cular areas (i.e., CVD of Haller’s layer) were larger in
both amblyopic (61.49 ± 4.95%) and fellow eyes (61.48 ±

Table 2 Multiple regression analysis of all eyes for choroidal vascular density (n = 117)

Independent variable Standardized β Partial correlation coefficient p-value

LogMAR −0.113 −0.071 0.449

Refractive error −0.169 −0.109 0.247

Subfoveal choroidal thickness 0.307 0.265 0.004

Fig. 3 Relationship between choroidal vascular density and best-corrected visual acuity in amblyopic eyes. No significant correlation is evident
between choroidal vascular density and best-corrected visual acuity (r = 0.094, p = 0.545)
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3.73%) than in healthy eyes (55.69 ± 1.83%) [11]. They
also indicated that the cutoff for distinguishing between
amblyopic patients and controls was 59%. In our current
study, the CVD in amblyopic and fellow eyes exceeded
59% (59.11 ± 0.66% and 59.23 ± 0.81%, respectively), con-
sistent with a report by Terada et al. However, the CVD
in normal control eyes (59.29 ± 0.74%) also exceeded
59%, resulting in comparable CVDs among different eye
conditions. In normal eyes, CVD has been reported to
correlate positively with SFCT [9]. However, SFCT was
slightly thicker in Terada’s control group (351.9 ±
60.7 μm) than in our control group (323.8 ± 69.1 μm).
The higher CVD in the normal control eye is thus not
attributable to differences in SFCT. Substantial individ-
ual differences might be present in CVD. We should
therefore be cautious of using CVD analysis of en-face
OCT images to evaluate amblyopia.
The present study showed that SFCT was significantly

thicker in the amblyopic eye than in fellow and normal
control eyes, while CVD was comparable among all eyes.
The results indicate that choroidal blood flow with re-
spect to total choroidal volume may be increased in am-
blyopic eyes than in fellow and normal control eyes. A
possible future direction of this work would be to inves-
tigate the ratio of choroidal vessels to total volume of
the choroid in amblyopic eyes.
Several limitations should be considered when inter-

preting the findings of the present study. First, the sam-
ple size was small. A further study of a larger number of
patients with detailed classifications of the degree and
type of amblyopia will need to be undertaken to validate
our findings. Second, CVD could only be assessed in a
3 × 3-mm localized area centered on the fovea. This was
due to the large difference in thickness between the cen-
ter and periphery of the choroid, making it difficult to
capture the same depth of vascular structure in the cen-
ter and periphery if the analyzed area of the en-face
image flattened with Bruch’s membrane is expanded. In
the future, new tools, such as high-penetration doppler
optical coherence angiography [22] and hybrid three-
dimensional models of the choroidal vasculature [23],
are expected to provide a more detailed assessment of
choroidal vascular structures.

Conclusions
In conclusion, the CVD of Haller’s layer did not differ
significantly between amblyopic eyes and fellow or nor-
mal control eyes. Evaluation of CVD using en-face OCT
may have little clinical significance in elucidating the
mechanisms underlying amblyopia.
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