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Abstract

Background: Glistenings describe small, refractile microvacuoles that may arise within the intraocular lens (IOL)
material and reduce the patients’ quality of vision. Lenses composed of hydrophobic acrylic material are particularly
affected by glistening formation. In this study, we compared the tendency of glistening formation in six different
types of hydrophobic acrylic intraocular lenses (IOLs).

Methods: We used a well-established accelerated laboratory method to develop glistenings in the following IOLs:
Vivinex XY1 (Hoya), AcrySof SN60WF (Alcon), Tecnis ZCB00 (AMO), Avansee PN6A (Kowa), Aktis SP NS-60YG (Nidek),
and CT Lucia 601P (Zeiss). IOLs were first immersed in saline at 45 °C for 24 h and then at 37 °C for 2.5 h in a water
bath. Microvacuole (MV) density and size (Miyata grading) were documented and calculated using an image
analysis program.

Results: The mean glistening density [MV/mm2] and mean Miyata grading (in brackets) were: Vivinex: 11.6 ± 5.7 (0),
SN60WF: 264.4 ± 110.3 (2.6), Tecnis: 6.0 ± 2.8 (0), Avansee: 2.2 ± 0.7 (0), Aktis: 851.4 ± 59.4 (3+) and CT Lucia: 71.0 ±
71.6 (1).

Conclusions: While all tested IOLs showed glistenings with the accelerated laboratory method, the Aktis and
SN60WF showed the highest microvacuole density, followed by the CT Lucia. In comparison, the Vivinex, Tecnis,
and Avansee IOLs showed far fewer number of glistenings.

Introduction
Glistenings have proven to be of significant interest to
clinicians owing to their potentially negative impact on
patients’ visual function [1–4]. Various studies have sug-
gested that severe glistenings could mildly reduce con-
trast sensitivity and visual acuity [5–9].
Glistening involves the formation of aqueous-filled

microvacuoles (MV) in implanted intraocular lenses
(IOLs), and is highly dependent on IOL material; the in-
cidence and severity are reported to be highest amongst
IOLs made up of hydrophobic acrylic materials [6, 10,

11]. According to a survey conducted by the American
Society of Cataract and Refractive Surgery, foldable
hydrophobic acrylic lenses are the most commonly im-
planted IOLs in the United States [12]. However, while
some of these lenses show severe glistening formation
[13–20], other hydrophobic acrylic IOLs have been re-
ported to be free of glistenings up to 2 years after im-
plantation [21].
The in-vitro evaluation of glistenings is challenging

due to the slow development of microvacuoles in the
IOL. Using a laboratory setting, the formation of glisten-
ings may be simulated and accelerated. While not per-
fectly representative of in-vivo conditions, in-vitro
studies are nevertheless considered valuable in providing
information about the tendency of a material to form
glistenings [7, 13–15]. Different techniques have been
proposed to create glistenings in-vitro [13–19]. In this
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study, we used the method published by Thomes and
Callaghan to generate glistenings under laboratory con-
ditions [13] and compared acute glistening formation in
six different hydrophobic acrylic IOL models by analyz-
ing the microvacuole density and size according to the
Miyata grading system [14].

Materials and methods
Six models of foldable IOL were analyzed in this compara-
tive trial: the Vivinex XY1 (Hoya), the AcrySof SN60WF
(Alcon), the Tecnis ZCB00 (AMO), the Avansee PN6A
(Kowa), the Aktis SP NS-60YG (Nidek) and the CT Lucia
601P (Zeiss). For each IOL model, we analyzed five IOLs.
All IOLs had + 20 D power and were made of clear (not
blue-light filtering) hydrophobic acrylic with an integrated
UV filter. Table 1 shows the material composition and
manufacturing methods of the IOLs.
We used the accelerated ageing simulation method, as

described by Thomes and Callaghan [13], on all IOLs. In
brief, the IOLs were placed in flasks that were filled with
balanced salt solution. The IOLs were always kept in a
wet state during the course of the study. These flasks were
placed in a climatic chamber set to 45 ± 1 °C. After 24 h,
the IOLs were moved to a 37 °C ± 1 °C water bath, where
they remained for another 2.5 h. Samples were analyzed
after ageing simulation was completed using a heated
stage microscope (MEIJI EMZ-TR8), a CCD camera, a
computer, and image analysis software (iSolution). The
IOLs were inspected visually via light microscopy. All
IOLs were evaluated at the specific temperature of 37 °C.
The heated stage enabled maintenance of the IOL at this
temperature during imaging. This accounted for maintain-
ing stable microvacuole size and density during
inspection.
In each lens, the area of the optical zone with the

densest distribution of microvacuoles was selected for
comparative analysis. For this purpose, the entire lens
was scanned and the region of maximum density (cen-
tral or paracentral and at the correct focal plane) was

imaged. The image analysis program then processed the
images. Data from these processed images was used to
evaluate microvacuole density (MVs/mm2).
Statistical analysis was performed using SPSS (IBM

SPSS Statistics, V.22). As the data did not satisfy the
normality distribution (Kolmogorov-Smimov test) and
equality of variance assumption (Levene test), all data
were statistically evaluated using nonparametric (Krus-
kal-Wallis) tests. A p-value of less than 0.05 was recog-
nized as statistically significant.

Results
Table 2 summarizes the results of all IOLs. All lenses
demonstrated glistening formation following the acceler-
ated ageing process, however there were large differ-
ences between the various IOL models (p < 0.001,
Kruskal-Wallis test).
The Nidek IOL showed very large glistening densities.

The Alcon IOL had only 31% glistenings compared to
the Nidek IOL. The Zeiss IOL demonstrated 27% glis-
tenings compared to the Alcon IOL (8% of the Nidek
IOL). The Hoya, AMO and KOWA IOLs showed only a
few glistenings at all (Fig. 1).
The analysis of the individual IOL per model group

(Fig. 2) shows, at least in part, large relative intra-model
differences for the Alcon and especially for the Zeiss
IOLs, while the relative differences between the Nidek
IOLs are fewer.
This trend is also reflected in the Miyata grading re-

sults (Fig. 3); the Hoya, AMO and KOWA materials
show the lowest grading, while the Zeiss lenses are clas-
sified slightly higher and the Alcon and Nidek IOLs are
graded on the top end of the grading system. Figure 4
shows the microscopic images of IOLs after glistening
formation.

Discussion
The negative impact of glistenings on visual functions
such as visual acuity and contrast sensitivity has been

Table 1 Optic material and manufacturing methods of the intraocular lenses

IOL Model Optic material composition Manufacturing
Process

Hoya Vivinex™ XY1 Crosslinked copolymer of phenylethyl methacrylate and n-butyl acrylate, fluoroalkyl methacrylate Lathe-cut

AMO Tecnis®
ZCB00

Copolymer of ethyl acrylate, ethyl methacrylate, 2.2,2-trifluorethyl methacrylate, crosslinked with ethylene
glycol dimethacrylate

Cryo-lathing

Kowa Avansee™
PN6A

Crosslinked copolymer of 2-phenoxyethyl acrylate and ethyl acrylate Cast-molding

Alcon AcrySof®
SN60WF

Copolymer of phenylethyl acrylate and phenylethyl methacrylate, crosslinked with butanediol diacrylate Cast-molding

Zeiss CT LUCIA®
601P

Copolymer of butyl acrylate, ethyl methacrylate and N-benzyl-N-isopropylpropenamide Heparin Coated
Surface

Lathe-cut

Nidek Aktis SP NS-
60YG

Copolymer of n-butyl acrylate, n-butyl methacrylate and phenoxyethyl acrylate Lathe-cut
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suggested by several studies [7, 8, 22, 23]. It is note-
worthy, however, that these studies revealed very small
deteriorations in visual function, and this too only in
cases with severe amounts of glistening formation.
Glistenings are usually considered to be fluid-filled

microvacuoles. They form within the IOL matrix under
exposition to aqueous environments [13]. As there is a sig-
nificant difference in the refractive indices of the liquid-
filled vacuoles (n = 1.33) and the polymer body of the IOL
(n = 1.55, depending on the IOL material), light is
refracted and scattered at the water-polymer border. The
vacuoles thus become visible using a slit lamp or under
light microscopy [16]. Their formation appears to be most
prominent in hydrophobic acrylic IOLs [6, 10, 11].
In our study, glistenings – or microvacuoles – were

developed by utilizing an accelerated microvacuole test
method on different IOL models [13]. We used
temperature changes in an aqueous environment to ac-
celerate the formation of glistenings, performing an op-
tical purity assessment by quantifying density and size of
glistenings in those IOLs.
We tested six different hydrophobic IOL models in

this laboratory setting, with the results demonstrating
that no IOL was completely glistening-free at the end of

the accelerated ageing procedure. Even though all six
IOL models were hydrophobic acrylic ones, the testing
revealed large inter-IOL and also some intra-IOL
differences.
The tendency of Alcon AcrySof IOLs to form glisten-

ings under laboratory conditions correlates well with the
findings of previously published clinical studies [6, 10,
11]. In the case of the Nidek Aktis model, glistenings
were even more prominent within this study. Despite
the larger amount of glistenings in the Aktis, the glisten-
ing size grading for both the Nidek and Alcon IOLs is
almost the same. Overall, the Zeiss Lucia IOL showed
smaller and fewer glistenings. Honing into the intra-IOL
differences of glistening density in each group demon-
strates that the Zeiss IOL shows one extreme value,
which increases the resulting mean. It is unclear why
this particular lens had a much larger glistening forma-
tion than the other specimen.
If one compares the intra-IOL differences of all IOL

groups, it becomes apparent that the Alcon, Zeiss and
Nidek IOLs show very similar intra-IOL differences. As
the average values of glistening density in the Zeiss IOL
are much lower than in the Alcon or Nidek IOL, the ex-
treme value causes this larger impact on the means. The

Table 2 Overview of the glistening densities and the Miyata grading [14] of all six intraocular lenses

IOL Model Glistenings/mm2 (mean ± standard deviation) Miyata grade (mean)

Hoya Vivinex™ XY1 11.6 ± 5.7 0

AMO Tecnis® ZCB00 6.0 ± 2.8 0

Kowa Avansee™ PN6A 2.2 ± 0.7 0

Alcon AcrySof® SN60WF 264.4 ± 110.3 2.6

Zeiss CT LUCIA® 601P 71.0 ± 71.6 1

Nidek Aktis SP NS-60YG 851.4 ± 59.4 3+

IOL Intraocular lens

Fig. 1 Mean microvacuole density of the six hydrophobic acrylic intraocular lenses
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other lenses (Hoya Vivinex, AMO Tecnis and KOWA
Avansee) showed very few and very small glistenings
only, which can be considered clinically irrelevant.
These lower values of glistening formation have been

corroborated for the Tecnis material in various studies
[24, 25]. There appears to be no previously published
data for the other IOLs in this study (Vivinex, Avansee,
Lucia and Aktis).
Within the in-vivo aqueous environment of the human

eye, certain temperature fluctuations might occur, which
are not reflected by our laboratory-based testing

methods. The morphological aspects apparent in labora-
tory testing are usually considered as being exaggerated
compared to in-vivo formations. While several studies
confirm the suitability of such in-vitro testing methods
for clinical assessment, temperature fluctuations might
trigger the development of different characteristics of
glistenings and their formation compared to the labora-
tory setting [11, 17, 24]. The rate of temperature fluctua-
tions appears to have an effect on the extent of
glistening formation. Furthermore, it remains somewhat
unclear whether glistenings produced with such in-vitro

Fig. 2 Microvacuole density in each of the six intraocular lens models; five individual lenses per model

Fig. 3 Mean Miyata grading [14] of all six lens models
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laboratory methods form due to the same principle or
are of the same kind as glistenings observed in the clin-
ical setting in human patients [13].
Osmolarity of the aqueous around the IOL may play

an additional role in glistening formation in the individ-
ual patient. This might also be said of certain comorbidi-
ties, such as diabetes mellitus, glaucoma, inflammatory
conditions or a disturbed blood-aqueous barrier.
Overall, in-vitro analysis as performed in our study does

provide an assessment of the tendency of a material to
form glistenings. The correlation between in-vitro test re-
sults and in-vivo observations, however, remains unclear.
It is important to note that the issue of glistening for-

mation may have been solved by introduction of the

novel Clareon material (Alcon), which was shown to be
glistenings-free in preclinical in-vitro studies (Auffarth
GU, ESCRS 2017). Similarly, Hoya has also developed a
new glistening-free material called Vivinex (Auffarth
GU, ESCRS 2017).
Whether glistenings may lead to any clinically relevant

disturbances of visual function of the pseudophakic vis-
ual system and an understanding of the evolution of
those disturbances in the late postoperative period re-
mains an issue of debate. Some studies showed that
there is no relevant impact of glistenings on vision [10,
26, 27]. Others reported a very limited impact on visual
acuity, contrast sensitivity at high spatial frequency or
intraocular stray light [5, 22, 28].

Fig. 4 Light microscopic images of all examined intraocular lenses after glistening formation (14x, 90x magnification)
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Our results offer a comparison between different IOL
models with regard to their tendency to form
glistenings.
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