Németh J, Maneschg O, Kovács I: Az endophthalmitis magyarországi adatai 2000 és 2007 között (Data on endophthalmitis in Hungary between 2000 and 2007 - hungarian). Szemészet – Acta ophthalmol.hung. 2011, 148: 42-45.
Google Scholar
Barry P, Seal DV, Gettinby G, Lees F, Peterson M, Revie CW: ESCRS Endophthalmitis Study Group: ESCRS study of prophylaxis of postoperative endophthalmitis after cataract surgery: Preliminary report of principal results from a European multicenter study. J Cataract Refract Surg. 2006, 32: 407-410. 10.1016/j.jcrs.2006.02.021.
Article
PubMed
Google Scholar
Endophthalmitis Vitrectomy Study Group: Results of the Endophthalmitis Vitrectomy Study. A randomized trial of immediate vitrectomy and of intravenous antibiotics for the treatment of postoperative bacterial endophthalmitis. Endophthalmitis Vitrectomy Study Group. Arch Ophthalmol. 1995, 113: 1479-1496.
Article
Google Scholar
Cao J, McLeod S, Merges CA, Lutty GA: Choriocapillaris degeneration and related pathologic changes in human diabetic eyes. Arch Ophthalmol. 1998, 116: 589-597. 10.1001/archopht.116.5.589.
Article
CAS
PubMed
Google Scholar
Gemenetzi M, De Salvo G, Lotery AJ: Central serous chorioretinopathy: an update on pathogenesis and treatment. Eye. 2010, 24: 1743-1756. 10.1038/eye.2010.130.
Article
CAS
PubMed
Google Scholar
Spaide RF, Koizumi H, Pozzoni MC: Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol. 2008, 146: 496-500. 10.1016/j.ajo.2008.05.032.
Article
PubMed
Google Scholar
Schmidt-Erfurth U, Kiss C, Sacu S: The role of choroidal hypoperfusion associated with photodynamic therapy in neovascular age-related macular degeneration and the consequences for combination strategies. Prog Retin Eye Res. 2009, 28: 145-154. 10.1016/j.preteyeres.2009.01.001.
Article
CAS
PubMed
Google Scholar
Nakayama M, Keino H, Okada AA, Watanabe T, Taki W, Inoue M, Hirakata A: Enhanced depth imaging optical coherence tomography of the choroid in Vogt-Koyanagi-Harada disease. Retina. 2012, 32: 2061-2069. 10.1097/IAE.0b013e318256205a.
Article
PubMed
Google Scholar
Stopa M, Bower BA, Davies E, Izatt JA, Toth CA: Correlation of pathologic features in spectral domain optical coherence tomography with conventional retinal studies. Retina. 2008, 28: 298-308. 10.1097/IAE.0b013e3181567798.
Article
PubMed
Google Scholar
Yamashita T, Yamashita T, Shirasawa M, Arimura N, Terasaki H, Sakamoto T: Repeatability and reproducibility of subfoveal choroidal thickness in normal eyes of Japanese using different SD-OCT devices. Invest Ophthalmol Vis Sci. 2012, 53: 1102-1107. 10.1167/iovs.11-8836.
Article
PubMed
Google Scholar
Krebs I, Smretschnig E, Moussa S, Brannath W, Womastek I, Binder S: Quality and reproducibility of retinal thickness measurements in two spectral-domain optical coherence tomography machines. Invest Ophthalmol Vis Sci. 2011, 52: 6925-6933. 10.1167/iovs.10-6612.
Article
PubMed
Google Scholar
Medina FJ, Callén CI, Rebolleda G, Muñoz-Negrete FJ, Callén MJ, del Valle FG: Use of nonmydriatic spectral-domain optical coherence tomography for diagnosing diabetic macular edema. Am J Ophthalmol. 2012, 153: 536-543. 10.1016/j.ajo.2011.08.008.
Article
PubMed
Google Scholar
Park HY, Park CK: Diagnostic Capability of Lamina Cribrosa Thickness by Enhanced Depth Imaging and Factors Affecting Thickness in Patients with Glaucoma. Ophthalmology. 2013, 120: 745-752. 10.1016/j.ophtha.2012.09.051.
Article
PubMed
Google Scholar
Leite MT, Rao HL, Zangwill LM, Weinreb RN, Medeiros FA: Comparison of the diagnostic accuracies of the Spectralis, Cirrus, and RTVue optical coherence tomography devices in glaucoma. Ophthalmology. 2011, 118: 1334-1339.
PubMed
Google Scholar
Correa-Pérez ME, López-Miguel A, Miranda-Anta S, Iglesias-Cortiñas D, Alió JL, Maldonado MJ: Precision of high definition spectral-domain optical coherence tomography for measuring central corneal thickness. Invest Ophthalmol Vis Sci. 2012, 53: 1752-1757. 10.1167/iovs.11-9033.
Article
PubMed
Google Scholar
Maruko I, Iida T, Sugano Y, Ojima A, Ogasawara M, Spaide RF: Subfoveal choroidal thickness after treatment of central serous chorioretinopathy. Ophthalmology. 2010, 117: 1792-1799. 10.1016/j.ophtha.2010.01.023.
Article
PubMed
Google Scholar
Jindal A, Pathengay A, Mithal K, Jalali S, Mathai A, Pappuru RR, Narayanan R, Chhablani J, Motukupally SR, Sharma S, Das T, Flynn HW: Endophthalmitis after open globe injuries: changes in microbiological spectrum and isolate susceptibility patterns over 14 years. J Ophthalmic Inflamm Infect. 2014, 18: 4-5.
Google Scholar
Regatieri CV, Branchini L, Fujimoto JG, Duker JS: Choroidal imaging using spectral-domain optical coherence tomography. Retina. 2012, 32: 865-876. 10.1097/IAE.0b013e318251a3a8.
Article
PubMed
PubMed Central
Google Scholar
Kim SW, Oh J, Kwon SS, Yoo J, Huh K: Comparison of choroidal thickness among patients with healthy eyes, early age-related maculopathy, neovascular age-related macular degeneration, central serous chorioretinopathy, and polypoidal choroidal vasculopathy. Retina. 2011, 31: 1904-1911. 10.1097/IAE.0b013e31821801c5.
Article
PubMed
Google Scholar
Koizumi H, Yamagishi T, Yamazaki T, Kawasaki R, Kinoshita S: Subfoveal choroidal thickness in typical age-related macular degeneration and polypoidal choroidal vasculopathy. Graefes Arch Clin Exp Ophthalmol. 2011, 249: 1123-1128. 10.1007/s00417-011-1620-1.
Article
PubMed
Google Scholar
Spaide RF, Koizumi H, Freund KB: Photoreceptor outer segment abnormalities as a cause of blind spot enlargement in acute zonal occult outer retinopathy-complex diseases. Am J Ophthalmol. 2008, 146: 111-120. 10.1016/j.ajo.2008.02.027.
Article
PubMed
Google Scholar
Inoue M, Morita S, Watanabe Y, Kaneko T, Yamane S, Kobayashi S, Arakawa A, Kadonosono K: Inner segment/outer segment junction assessed by spectral-domain optical coherence tomography in patients with idiopathic epiretinal membrane. Am J Ophthalmol. 2010, 150: 834-839. 10.1016/j.ajo.2010.06.006.
Article
PubMed
Google Scholar
Hood DC, Lazow MA, Locke KG, Greenstein VC, Birch DG: The transition zone between healthy and diseased retina in patients with retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2011, 52: 101-108. 10.1167/iovs.10-5799.
Article
PubMed
PubMed Central
Google Scholar
Ryan SJ: Retina - 4 th edition Vol 1. 2006, Philadelphia, PA: Elsevier Mosby
Google Scholar
Margolis R, Spaide RF: A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes. Am J Ophthalmol. 2009, 147: 811-815. 10.1016/j.ajo.2008.12.008.
Article
PubMed
Google Scholar
Noori J, Esfahani MR, Hajizadeh F, Zaferani MM: Choroidal mapping; a novel approach for evaluating choroidal thickness and volume. J Ophthalmic Vis Res. 2012, 7: 180-185.
PubMed
PubMed Central
Google Scholar
El Matri L, Bouladi M, Chebil A, Kort F, Bouraoui R, Largueche L, Mghaieth F: Choroidal Thickness Measurement in Highly Myopic Eyes Using SD-OCT. Ophthalmic Surg Lasers Imaging. 2012, 43: 38-43. 10.3928/15428877-20121001-02.
Article
Google Scholar
Wang NK, Lai CC, Chou CL, Chen YP, Chuang LH, Chao AN, Tseng HJ, Chang CJ, Wu WC, Chen KJ, Tsang SH: Choroidal thickness and biometric markers for the screening of lacquer cracks in patients with high myopia. PLoS One. 2013, 8 (1): e53660-10.1371/journal.pone.0053660.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mwanza JC, Hochberg JT, Banitt MR, Feuer WJ, Budenz DL: Lack of association between glaucoma and macular choroidal thickness measured with enhanced depth-imaging optical coherence tomography. Invest Ophthalmol Vis Sci. 2011, 52: 3430-3435. 10.1167/iovs.10-6600.
Article
PubMed
PubMed Central
Google Scholar
Németh J: The posterior coats of the eye in glaucoma. An echobiometric study. Graefes Arch Clin Exp Ophthalmol. 1990, 228: 33-35. 10.1007/BF02764287.
Article
PubMed
Google Scholar
Németh J, Michelson G, Harazny J: Retinal microcirculation correlates with ocular wall thickness, axial eye length, and refraction in glaucoma patients. J Glaucoma. 2001, 10: 390-395. 10.1097/00061198-200110000-00005.
Article
PubMed
Google Scholar
Guthoff R, Berger RW, Draeger J: Ultrasonographic measurement of the posterior coats of the eye and their relation to axial length. Graefes Arch Clin Exp Ophthalmol. 1987, 225: 374-376. 10.1007/BF02153409.
Article
CAS
PubMed
Google Scholar
Fujiwara A, Shiragami C, Fukuda K, Nomoto H, Shirakata Y, Shiraga F: Changes in subfoveal choroidal thickness of epiretinal membrane and macular hole before and after microincision vitrectomy surgery. Nihon Ganka Gakkai Zasshi. 2012, 116: 1080-1085.
PubMed
Google Scholar
Almanjoumi AM, Combey A, Romanet JP, Chiquet C: 23-gauge transconjunctival sutureless vitrectomy in treatment of post-operative endophthalmitis. Graefes Arch Clin Exp Ophthalmol. 2012, 250: 1367-1371. 10.1007/s00417-012-1926-7.
Article
PubMed
Google Scholar
Jambulingam M, Parameswaran SK, Lysa S, Selvaraj M, Madhavan HN: A study on the incidence, microbiological analysis and investigations on the source of infection of postoperative infectious endophthalmitis in a tertiary care ophthalmic hospital: An 8-year study. Indian J Ophthalmol. 2010, 58: 297-302. 10.4103/0301-4738.64132.
Article
PubMed
PubMed Central
Google Scholar
Al-Mezaine HS, Kangave D, Al-Assiri , Al-Rajhi AA: Acute-onset nosocomial endophthalmitis after cataract surgery: incidence, clinical features, causative organisms, and visual outcomes. J Cataract Refract Surg. 2009, 35: 643-649. 10.1016/j.jcrs.2009.01.003.
Article
PubMed
Google Scholar
Karaca EE, Ozdek S, Yalçin NG, Ekici F: Reproducibility of choroidal thickness measurements in healthy Turkish subjects. Eur J Ophthalmol. 2014, 24: 202-208. 10.5301/ejo.5000351.
Article
PubMed
Google Scholar