Ceravolo I, Oliverio GW, Alibrandi A, Bhatti A, Trombetta L, Rejdak R, et al. The application of structural retinal biomarkers to evaluate the effect of intravitreal Ranibizumab and dexamethasone intravitreal implant on treatment of diabetic macular edema. Diagnostics. 2020;10(6). https://doi.org/10.3390/DIAGNOSTICS10060413.
Pietras-Baczewska A, Nowomiejska K, Brzozowska A, Toro MD, Załuska W, Sztanke M, et al. Antioxidant Status in the Vitreous of Eyes with Rhegmatogenous Retinal Detachment with and without Proliferative Vitreoretinopathy, Macular Hole and Epiretinal Membrane. Life. 2021;11(5). https://doi.org/10.3390/LIFE11050453.
Boyer DS, Yoon YH, Belfort R, Bandello F, Maturi RK, Augustin AJ, et al. Three-year, randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with diabetic macular edema. Ophthalmology. 2014;121(10):1904–14. https://doi.org/10.1016/j.ophtha.2014.04.024.
Article
PubMed
Google Scholar
Brown DM, Schmidt-Erfurth U, Do DV, Holz FG, Boyer DS, Midena E, et al. Intravitreal aflibercept for diabetic macular edema: 100-week results from the VISTA and VIVID studies. Ophthalmology. 2015;122:2044–52. https://doi.org/10.1016/j.ophtha.2015.06.017.
Article
PubMed
Google Scholar
Mitchell P, Wong TY. Management paradigms for diabetic macular edema. Am J Ophthalmol. 2014;157(3):505–513.e8. https://doi.org/10.1016/j.ajo.2013.11.012.
Article
CAS
PubMed
Google Scholar
Kang YK, Park HS, Park DH, Shin JP. Incidence and treatment outcomes of secondary epiretinal membrane following intravitreal injection for diabetic macular edema. Sci Rep. 2020;10:1–7.
Article
Google Scholar
Kulikov AN, Sosnovskii SV, Berezin RD, Maltsev DS, Oskanov DH, Gribanov NA. Vitreoretinal interface abnormalities in diabetic macular edema and effectiveness of anti-VEGF therapy: an optical coherence tomography study. Clin Ophthalmol. 2017;11:1995–2002. https://doi.org/10.2147/OPTH.S146019.
Article
PubMed
PubMed Central
Google Scholar
Ghazi NG, Ciralsky JB, Shah SM, Campochiaro PA, Haller JA. Optical coherence tomography findings in persistent diabetic macular edema: the vitreomacular interface. Am J Ophthalmol. 2007;144:747–754.e2.
Article
Google Scholar
Kim BY, Smith SD, Kaiser PK. Optical coherence tomographic patterns of diabetic macular edema. Am J Ophthalmol. 2006;142(3):405–412.e1. https://doi.org/10.1016/j.ajo.2006.04.023.
Article
PubMed
Google Scholar
Wong Y, Steel DHW, Habib MS, Stubbing-Moore A, Bajwa D, Avery PJ. Vitreoretinal interface abnormalities in patients treatedwith ranibizumab for diabetic macular oedema. Graefes Arch Clin Exp Ophthalmol. 2017;255(4):733–42. https://doi.org/10.1007/s00417-016-3562-0.
Article
CAS
PubMed
Google Scholar
Akbar Khan I, Mohamed MD, Mann SS, Hysi PG, Laidlaw DA. Prevalence of vitreomacular interface abnormalities on spectral domain optical coherence tomography of patients undergoing macular photocoagulation for Centre involving diabetic macular oedema. Br J Ophthalmol. 2015;99(8):1078–81. https://doi.org/10.1136/bjophthalmol-2014-305966.
Article
CAS
PubMed
Google Scholar
Ophir A, Martinez MR, Mosqueda P, Trevino A. Vitreous traction and epiretinal membranes in diabetic macular oedema using spectral-domain optical coherence tomography. Eye. 2010;24(10):1545–53. https://doi.org/10.1038/eye.2010.80.
Article
CAS
PubMed
Google Scholar
Hagenau F, Vogt D, Ziada J, Guenther SR, Haritoglou C, Wolf A, et al. Vitrectomy for diabetic macular edema: optical coherence tomography criteria and pathology of the Vitreomacular Interface. Am J Ophthalmol. 2019;200:34–46. https://doi.org/10.1016/j.ajo.2018.12.004.
Article
PubMed
Google Scholar
Harada C, Mitamura Y, Harada T. The role of cytokines and trophic factors in epiretinal membranes: involvement of signal transduction in glial cells. Prog Retin Eye Res. 2006;25(2):149–64. https://doi.org/10.1016/j.preteyeres.2005.09.001.
Article
CAS
PubMed
Google Scholar
Chen YS, Hackett SF, Schoenfeld CL, Vinores MA, Vinores SA, Campochiaro PA. Localisation of vascular endothelial growth factor and its receptors to cells of vascular and avascular epiretinal membranes. Br J Ophthalmol. 1997;81(10):919–26. https://doi.org/10.1136/bjo.81.10.919.
Article
CAS
PubMed
PubMed Central
Google Scholar
Namba R, Kaneko H, Suzumura A, Shimizu H, Kataoka K, Takayama K, et al. In vitro epiretinal membrane model and antibody permeability: relationship with anti-VEGF resistance in diabetic macular edema. Investig Ophthalmol Vis Sci. 2019;60(8):2942–9. https://doi.org/10.1167/iovs.19-26788.
Article
CAS
Google Scholar
Uji A, Murakami T, Suzuma K, Yoshitake S, Arichika S, Ghashut R, et al. Influence of vitrectomy surgery on the integrity of outer retinal layers in diabetic macular edema. Retina. 2018;38(1):163–72. https://doi.org/10.1097/IAE.0000000000001519.
Article
PubMed
Google Scholar
Iglicki M, Lavaque A, Ozimek M, Negri HP, Okada M, Chhablani J, et al. Biomarkers and predictors for functional and anatomic outcomes for small gauge pars plana vitrectomy and peeling of the internal limiting membrane in naïve diabetic macular edema: the VITAL study. PLoS One. 2018;13(7):e0200365. https://doi.org/10.1371/journal.pone.0200365.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miyamoto N, Ishida K, Kurimoto Y. Restoration of photoreceptor outer segments up to 24 months after pars Plana vitrectomy in patients with diabetic macular edema. Ophthalmol Retina. 2017;1(5):389–94. https://doi.org/10.1016/j.oret.2017.01.017.
Article
PubMed
Google Scholar
Kumagai K, Hangai M, Ogino N, Larson E. Effect of internal limiting membrane peeling on long-term visual outcomes for diabetic macular edema. Retina. 2015;35(7):1422–8. https://doi.org/10.1097/IAE.0000000000000497.
Article
PubMed
Google Scholar
Bonnin S, Sandali O, Bonnel S, Monin C, El Sanharawi M. Vitrectomy with internal limiting membrane peeling for tractional and nontractional diabetic macular EDEMA: long-term results of a comparative study. Retina. 2015;35(5):921–8. https://doi.org/10.1097/IAE.0000000000000433.
Article
PubMed
Google Scholar
Harbour JW, Smiddy WE, Flynn HW, Rubsamen PE. Vitrectomy for diabetic macular edema associated with a thickened and taut posterior hyaloid membrane. Am J Ophthalmol. 1996;121(4):405–13. https://doi.org/10.1016/S0002-9394(14)70437-4.
Article
CAS
PubMed
Google Scholar
Chhablani JK, Kim JS, Cheng L, Kozak I, Freeman W. External limiting membrane as a predictor of visual improvement in diabetic macular edema after pars plana vitrectomy. Graefes Arch Clin Exp Ophthalmol. 2012;250(10):1415–20. https://doi.org/10.1007/s00417-012-1968-x.
Article
PubMed
Google Scholar
Maheshwary AS, Oster SF, Yuson RMS, Cheng L, Mojana F, Freeman WR. The association between percent disruption of the photoreceptor inner segment-outer segment junction and visual acuity in diabetic macular edema. Am J Ophthalmol. 2010;150(1):63–67.e1. https://doi.org/10.1016/j.ajo.2010.01.039.
Article
PubMed
PubMed Central
Google Scholar
Otani T, Yamaguchi Y, Kishi S. Correlation between visual acuity and foveal microstructural changes in diabetic macular edema. Retina. 2010;30(5):774–80. https://doi.org/10.1097/IAE.0b013e3181c2e0d6.
Article
PubMed
Google Scholar
Otani T, Kishi S. A controlled study of vitrectomy for diabetic macular edema. Am J Ophthalmol. 2002;134(2):214–9. https://doi.org/10.1016/S0002-9394(02)01548-9.
Article
PubMed
Google Scholar
Sun JK, Lin MM, Lammer J, Prager S, Sarangi R, Silva PS, et al. Disorganization of the retinal inner layers as a predictor of visual acuity in eyes with center-involved diabetic macular edema. JAMA Ophthalmol. 2014;132(11):1309–16. https://doi.org/10.1001/jamaophthalmol.2014.2350.
Article
PubMed
Google Scholar
Ichiyama Y, Sawada O, Mori T, Fujikawa M, Kawamura H, Ohji M. The effectiveness of vitrectomy for diffuse diabetic macular edema may depend on its preoperative optical coherence tomography pattern. Graefes Arch Clin Exp Ophthalmol. 2016;254(8):1545–51. https://doi.org/10.1007/s00417-015-3251-4.
Article
PubMed
Google Scholar
Bunt-Milam AH, Saari JC, Klock IB, Garwin GG. Zonulae adherentes pore size in the external limiting membrane of the rabbit retina. Investig Ophthalmol Vis Sci. 1985;26(10):1377–80.
CAS
Google Scholar
Zhang Q, Qi Y, Chen L, Shi X, Bai Y, Huang L, et al. The relationship between anti-vascular endothelial growth factor and fibrosis in proliferative retinopathy: clinical and laboratory evidence. Br J Ophthalmol. 2016;100(10):1443–50. https://doi.org/10.1136/bjophthalmol-2015-308199.
Article
PubMed
Google Scholar
Lewis GP, Fisher SK. Up-regulation of glial fibrillary acidic protein in response to retinal injury: its potential role in glial remodeling and a comparison to vimentin expression. Int Rev Cytol. 2003;230:263–90. https://doi.org/10.1016/S0074-7696(03)30005-1.
Article
CAS
PubMed
Google Scholar
Unterlauft JD, Eichler W, Kuhne K, Mei Yang X, Yafai Y, Wiedemann P, et al. Pigment epithelium-derived factor released by mü ller glial cells exerts neuroprotective effects on retinal ganglion cells. Neurochem Res. 2012;37(7):1524–33. https://doi.org/10.1007/s11064-012-0747-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang M, Ma W, Zhao L, Fariss RN, Wong WT. Adaptive Müller cell responses to microglial activation mediate neuroprotection and coordinate inflammation in the retina. J Neuroinflammation. 2011;8(1):173. https://doi.org/10.1186/1742-2094-8-173.
Article
CAS
PubMed
PubMed Central
Google Scholar
Romano MR, Romano V, Vallejo-Garcia JL, Vinciguerra R, Romano M, Cereda M, et al. Macular hypotrophy after internal limiting membrane removal for diabetic macular edema. Retina. 2014;34(6):1182–9. https://doi.org/10.1097/IAE.0000000000000076.
Article
PubMed
Google Scholar
Yoshikawa M, Murakami T, Nishijima K, Uji A, Ogino K, Horii T, et al. Macular migration toward the optic disc after inner limiting membrane peeling for diabetic macular edema. Investig Ophthalmol Vis Sci. 2013;54(1):629–35. https://doi.org/10.1167/iovs.12-10907.
Article
Google Scholar
Stefánsson E. Physiology of vitreous surgery. Graefes Arch Clin Exp Ophthalmol. 2009;247(2):147–63. https://doi.org/10.1007/s00417-008-0980-7.
Article
PubMed
Google Scholar
Holekamp NM, Shui YB, Beebe DC. Vitrectomy surgery increases oxygen exposure to the lens: a possible mechanism for nuclear cataract formation. Am J Ophthalmol. 2005;139(2):302–10. https://doi.org/10.1016/j.ajo.2004.09.046.
Article
PubMed
Google Scholar
Holekamp NM, Shui YB, Beebe D. Lower intraocular oxygen tension in diabetic patients: possible contribution to decreased incidence of nuclear sclerotic cataract. Am J Ophthalmol. 2006;141(6):1027–32. https://doi.org/10.1016/j.ajo.2006.01.016.
Article
PubMed
Google Scholar
Lee SS, Ghosn C, Yu Z, Zacharias LC, Kao H, Lanni C, et al. Vitreous VEGF clearance is increased after vitrectomy. Investig Ophthalmol Vis Sci. 2010;51(4):2135–8. https://doi.org/10.1167/iovs.09-3582.
Article
Google Scholar
Wolf S, Schnurbusch U, Wiedemann P, Grosche J, Reichenbach A, Wolburg H. Peeling of the basal membrane in the human retina: ultrastructural effects. Ophthalmology. 2004;111(2):238–43. https://doi.org/10.1016/j.ophtha.2003.05.022.
Article
PubMed
Google Scholar
Ivastinovic D, Smiddy WE, Wackernagel W, Palkovits S, Predović J, Šarić B, et al. The occurrence of delayed ocular hypertension and glaucoma after pars plana vitrectomy for rhegmatogenous retinal detachment. Acta Ophthalmol. 2016;94(6):e525–7. https://doi.org/10.1111/aos.12925.
Article
PubMed
Google Scholar
Schrey S, Krepler K, Wedrich A. Incidence of rhegmatogenous retinal detachment after vitrectomy in eyes of diabetic patients. Retina. 2006;26(2):149–52. https://doi.org/10.1097/00006982-200602000-00004.
Article
PubMed
Google Scholar