American Diabetes Association. Standards of medical care in diabetes — 2016. Diabetes Care. 2016;39:S1–108.
Google Scholar
Cole JB, Florez JC. Genetics of diabetes mellitus and diabetes complications. Nat Rev Nephrol. 2020;16(7):377–90.
Article
PubMed
Google Scholar
Skyler JS, Bakris GL, Bonifacio E, et al. Differentiation of diabetes by pathophysiology, natural history, and prognosis. Diabetes. 2017;66(2):241–55.
Article
CAS
PubMed
Google Scholar
Grading diabetic retinopathy from stereoscopic color fundus photographs--an extension of the modified Airlie House classification. ETDRS report number 10. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology. 1991;98(5 Suppl):786–806.
Sabanayagam C, Banu R, Chee ML, et al. Incidence and progression of diabetic retinopathy: a systematic review. Lancet Diabetes Endocrinol. 2019;7(2):140–9.
Article
PubMed
Google Scholar
Li H, Liao T, Debowski AW, Tang H, et al. Lipopolysaccharide structure and biosynthesis in helicobacter pylori. Helicobacter. 2016;21(6):445–61.
Article
CAS
PubMed
Google Scholar
Wu Y, Sun Y, Dong X, et al. The Synergism of PGN, LTA and LPS in inducing transcriptome changes, inflammatory responses and a decrease in lactation as well as the associated epigenetic mechanisms in bovine mammary epithelial cells. Toxins (Basel). 2020;12(6):387.
Article
Google Scholar
Gomes JMG, Costa JA, Alfenas RCG. Metabolic endotoxemia and diabetes mellitus: a systematic review. Metabolism. 2017;68:133–44.
Article
CAS
PubMed
Google Scholar
Adak A, Khan MR. An insight into gut microbiota and its functionalities. Cell Mol Life Sci. 2019;76(3):473–93.
Article
CAS
PubMed
Google Scholar
Gurung M, Li Z, You H, et al. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine. 2020;51:102590.
Article
PubMed
PubMed Central
Google Scholar
Tanase D, Gosav E, Neculae E, Costea C, Ciocoiu M, et al. Role of Gut Microbiota on Onset and Progression of Microvascular Complications of Type 2 Diabetes (T2DM). Nutrients. 2020;12(12):3719.
Weiss GA, Hennet T. Mechanisms and consequences of intestinal dysbiosis. Cell Mol Life Sci. 2017;74(16):2959–77.
Article
CAS
PubMed
Google Scholar
Chow J, Tang H, Mazmanian SK. Pathobionts of the gastrointestinal microbiota and inflammatory disease. Curr Opin Immunol. 2011;23(4):473–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Le Chatelier E, Nielsen T, Qin J, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500(7464):541–6.
Article
PubMed
Google Scholar
Das T, Jayasudha R, Chakravarthy S, et al. Alterations in the gut bacterial microbiome in people with type 2 diabetes mellitus and diabetic retinopathy. Sci Rep. 2021;11(1):2738.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490:55–60.
Article
CAS
PubMed
Google Scholar
Noureldein MH, Bitar S, Youssef N, Azar S, Eid AA. Butyrate modulates diabetes-linked gut dysbiosis: epigenetic and mechanistic modifications. J Mol Endocrinol. 2020;64(1):29–42.
Article
CAS
PubMed
Google Scholar
Makki K, Deehan EC, Walter J, Bäckhed F. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe. 2018;23(6):705–15.
Article
CAS
PubMed
Google Scholar
Fiorucci S, Distrutti E. Bile acid-activated receptors, intestinal microbiota, and the treatment of metabolic disorders. Trends Mol Med. 2015;21(11):702–14.
Article
CAS
PubMed
Google Scholar
Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56(7):1761–72.
Article
CAS
PubMed
Google Scholar
Forslund K, Hildebrand F, Nielsen T, et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature. 2015;528(7581):262–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhaboedov GD, Kopaenko AI. Impaired antiendotoxin immunity in patients with diabetic retinopathy and type 2 diabetes mellitus. Vestn Oftalmol. 2005;121(6):29–31.
CAS
PubMed
Google Scholar
Pasini E, Corsetti G, Assanelli D, et al. Effects of chronic exercise on gut microbiota and intestinal barrier in human with type 2 diabetes. Minerva Med. 2019;110(1):3–11.
Article
PubMed
Google Scholar
Duan Y, Prasad R, Feng D, et al. Bone marrow-derived cells restore functional integrity of the gut epithelial and vascular barriers in a model of diabetes and ACE2 Deficiency. Circ Res. 2019;125(11):969–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thaiss CA, Levy M, Grosheva I, et al. Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection. Science. 2018;359(6382):1376–83.
Article
CAS
PubMed
Google Scholar
Salgaço MK, Oliveira LGS, Costa GN, Bianchi F, Sivieri K. Relationship between gut microbiota, probiotics, and type 2 diabetes mellitus. Appl Microbiol Biotechnol. 2019;103(23–24):9229–38.
Article
PubMed
Google Scholar
Zareie M, Riff J, Donato K, et al. Novel effects of the prototype translocating Escherichia coli, strain C25 on intestinal epithelial structure and barrier function. Cell Microbiol. 2005;7:1782–97.
Article
CAS
PubMed
Google Scholar
Peng L, Li Z-R, Green RS, et al. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J Nutr. 2009;139:1619–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsukamoto H, Takeuchi S, Kubota K, et al. Lipopolysaccharide (LPS)-binding protein stimulates CD14-dependent Toll-like receptor 4 internalization and LPS-induced TBK1-IKKϵ-IRF3 axis activation. J Biol Chem. 2018;293(26):10186–201.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ryu JK, Kim SJ, Rah SH, et al. Reconstruction of LPS transfer cascade reveals structural determinants within LBP, CD14, and TLR4-MD2 for efficient LPS recognition and transfer. Immunity. 2017;46(1):38–50.
Article
CAS
PubMed
Google Scholar
Frazier TH, DiBaise JK, McClain CJ. Gut microbiota, intestinal permeability, obesity-induced inflammation, and liver injury. JPEN J Parenter Enteral Nutr. 2011;35(5 Suppl):14S-20S.
Article
CAS
PubMed
Google Scholar
Tyrberg M, Lindblad U, Melander A, Lövestam-Adrian M, Ponjavic V, Andréasson S. Electrophysiological studies in newly onset type 2 diabetes without visible vascular retinopathy. Doc Ophthalmol. 2011;123(3):193–8.
Article
CAS
PubMed
Google Scholar
Hammes HP. Diabetic retinopathy: hyperglycaemia, oxidative stress and beyond. Diabetologia. 2018;61(1):29–38.
Article
PubMed
Google Scholar
Safi SZ, Qvist R, Kumar S, Batumalaie K, Ismail IS. Molecular mechanisms of diabetic retinopathy, general preventive strategies, and novel therapeutic targets. Biomed Res Int. 2014;2014:801269.
Article
PubMed
PubMed Central
Google Scholar
Stitt AW. Advanced glycation: an important pathological event in diabetic and age related ocular disease. Br J Ophthalmol. 2001;85(6):746–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bierhaus A, Hofmann MA, Ziegler R, Nawroth PP. AGEs and their interaction with AGE-receptors in vascular disease and diabetes mellitus. I. The AGE concept. Cardiovasc Res. 1998;37(3):586-600.
Takayanagi Y, Yamanaka M, Fujihara J, et al. Evaluation of relevance between advanced glycation end products and diabetic retinopathy stages using skin autofluorescence. Antioxidants (Basel). 2020;9(11):1100.
Article
CAS
Google Scholar
Wu H, Hwang DK, Song X, Tao Y. Association between aqueous cytokines and diabetic retinopathy stage. J Ophthalmol. 2017;2017:9402198.
PubMed
PubMed Central
Google Scholar
Funatsu H, Yamashita H, Sakata K, Noma H, Mimura T, Suzuki M, Eguchi S, Hori S. Vitreous levels of vascular endothelial growth factor and intercellular adhesion molecule 1 are related to diabetic macular edema. Ophthalmology. 2005;112:806–16.
Article
PubMed
Google Scholar
Mao C, Yan H. Roles of elevated intravitreal IL-1beta and IL-10 levels in proliferative diabetic retinopathy. Indian J Ophthalmol. 2014;62:699–701.
Article
PubMed
PubMed Central
Google Scholar
Kim M, Kim Y, Lee SJ. Comparison of aqueous concentrations of angiogenic and inflammatory cytokines based on optical coherence tomography patterns of diabetic macular edema. Indian J Ophthalmol. 2015;63:312–7.
Article
PubMed
PubMed Central
Google Scholar
Campochiaro PA, Brown DM, Pearson A, et al. Long-term benefit of sustained-delivery fluocinolone acetonide vitreous inserts for diabetic macular edema. Ophthalmology. 2011;118:626-635.e2.
Article
PubMed
Google Scholar
Pacella F, Agostinelli E, Carlesimo SC, Nebbioso M, Secondi R, Forastiere M, Pacella E. Management of anterior chamber dislocation of a dexamethasone intravitreal implant: a case report. J Med Case Rep. 2016;10:282.
Article
PubMed
PubMed Central
Google Scholar
Giurdanella G, Anfuso CD, Olivieri M, et al. Aflibercept, bevacizumab and ranibizumab prevent glucose-induced damage in human retinal pericytes in vitro, through a PLA2/COX-2/VEGF-A pathway. Biochem Pharmacol. 2015;96(3):278–87.
Article
CAS
PubMed
Google Scholar
Chen M, Luo C, Zhao J, Devarajan G, Xu H. Immune regulation in the aging retina. Prog Retin Eye Res. 2019;69:159–72.
Article
CAS
PubMed
Google Scholar
Antonetti DA, Klein R, Gardner TW. Diabetic retinopathy. N Engl J Med. 2012;366(13):1227–39.
Article
CAS
PubMed
Google Scholar
Rudraraju M, Narayanan SP, Somanath PR. Regulation of blood-retinal barrier cell-junctions in diabetic retinopathy. Pharmacol Res. 2020;161:105115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hernández C, Ortega F, García-Ramírez M, Villarroel M, Casado J, et al. Lipopolysaccharide-binding protein and soluble CD14 in the vitreous fluid of patients with proliferative diabetic retinopathy. Retina (Philadelphia, Pa). 2010;30:345–52.
Article
Google Scholar
Lee H, Jang H, Choi YA, Kim HC, Chung H. Association between soluble CD14 in the aqueous humor and hyperreflective foci on optical coherence tomography in patients with diabetic macular edema. Invest Ophthalmol Vis Sci. 2018;59(2):715–21.
Article
CAS
PubMed
Google Scholar
Howes EL Jr, Hoffman MA, Ulevitch RJ, Mathison JC, Morrison DC. Ocular localization of circulating bacterial lipopolysaccharide. Exp Eye Res. 1984;38(4):379–89.
Article
CAS
PubMed
Google Scholar
Bill A, Törnquist P, Alm A. Permeability of the intraocular blood vessels. Trans Ophthalmol Soc U K. 1980;100(3):332–6.
CAS
PubMed
Google Scholar
Kokona D, Ebneter A, Escher P, Zinkernagel MS. Colony-stimulating factor 1 receptor inhibition prevents disruption of the blood-retina barrier during chronic inflammation. J Neuroinflammation. 2018;15(1):340.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vagaja NN, Binz N, McLenachan S, Rakoczy EP, McMenamin PG. Influence of endotoxin-mediated retinal inflammation on phenotype of diabetic retinopathy in Ins2 Akita mice. Br J Ophthalmol. 2013;97(10):1343–50.
Article
PubMed
Google Scholar
Noailles A, Maneu V, Campello L, et al. Systemic inflammation induced by lipopolysaccharide aggravates inherited retinal dystrophy. Cell Death Dis. 2018;9(3):350.
Article
PubMed
PubMed Central
Google Scholar
Ciesielska A, Matyjek M, Kwiatkowska K. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cell Mol Life Sci. 2021;78(4):1233–61.
Article
CAS
PubMed
Google Scholar
Eldridge MJ, Shenoy AR. Antimicrobial inflammasomes: unified signalling against diverse bacterial pathogens. Curr Opin Microbiol. 2015;23:32–41.
Article
CAS
PubMed
Google Scholar
Ghosh F, Abdshill H, Arnér K, Voss U, Taylor L. Retinal neuroinflammatory induced neuronal degeneration - Role of toll-like receptor-4 and relationship with gliosis. Exp Eye Res. 2018;169:99–110.
Article
CAS
PubMed
Google Scholar
Hikage F, Lennikov A, Mukwaya A, et al. NF-κB activation in retinal microglia is involved in the inflammatory and neovascularization signaling in laser-induced choroidal neovascularization in mice. Exp Cell Res. 2021;403(1):112581.
Article
CAS
PubMed
Google Scholar
Yi YS. Caspase-11 non-canonical inflammasome: a critical sensor of intracellular lipopolysaccharide in macrophage-mediated inflammatory responses. Immunology. 2017;152(2):207–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang LP, Sun HL, Wu LM, et al. Baicalein reduces inflammatory process in a rodent model of diabetic retinopathy. Invest Ophthalmol Vis Sci. 2009;50(5):2319–27.
Article
PubMed
Google Scholar
Chen X, Yan X, Guo L. Inhibitory effect of Patrinia on BRL-3A cell apoptosis through the TLR4/PI3K/AKT/GSK3β and TLR4/P38/JNK signaling pathways. Mol Med Rep. 2018;17(4):5344–9.
CAS
PubMed
Google Scholar
Lv H, Liu Q, Wen Z, Feng H, Deng X, Ci X. Xanthohumol ameliorates lipopolysaccharide (LPS)-induced acute lung injury via induction of AMPK/GSK3β-Nrf2 signal axis. Redox Biol. 2017;12:311–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Altmann C, Schmidt MHH. The role of microglia in diabetic retinopathy: inflammation, microvasculature defects and neurodegeneration. Int J Mol Sci. 2018;19(1):110.
Article
PubMed Central
Google Scholar
Bell OH, Copland DA, Ward A, et al. Single Eye mRNA-Seq reveals normalisation of the retinal microglial transcriptome following acute inflammation. Front Immunol. 2020;10:3033.
Article
PubMed
PubMed Central
Google Scholar
Orihuela R, McPherson CA, Harry GJ. Microglial M1/M2 polarization and metabolic states. Br J Pharmacol. 2016;173(4):649–65.
Article
CAS
PubMed
Google Scholar
Huang Z, Zhou T, Sun X, et al. Necroptosis in microglia contributes to neuroinflammation and retinal degeneration through TLR4 activation. Cell Death Differ. 2018;25(1):180–9.
Article
CAS
PubMed
Google Scholar
Scholz R, Sobotka M, Caramoy A, et al. Minocycline counter-regulates pro-inflammatory microglia responses in the retina and protects from degeneration. J Neuroinflammation. 2015;12:209.
Article
PubMed
PubMed Central
Google Scholar
Ding X, Gu R, Zhang M, et al. Microglia enhanced the angiogenesis, migration and proliferation of co-cultured RMECs. BMC Ophthalmol. 2018;18(1):249.
Article
PubMed
PubMed Central
Google Scholar
Ding X, Zhang M, Gu R, et al. Activated microglia induce the production of reactive oxygen species and promote apoptosis of co-cultured retinal microvascular pericytes. Graefes Arch Clin Exp Ophthalmol. 2017;255(4):777–88.
Article
CAS
PubMed
Google Scholar
Bringmann A, Pannicke T, Grosche J, et al. Müller cells in the healthy and diseased retina. Prog Retin Eye Res. 2006;25(4):397–424.
Article
CAS
PubMed
Google Scholar
Rungger-Brändle E, Messerli JM, Niemeyer G, Eppenberger HM. Confocal microscopy and computer-assisted image reconstruction of astrocytes in the mammalian retina. Eur J Neurosci. 1993;5(8):1093–106.
Article
PubMed
Google Scholar
Sorrentino FS, Allkabes M, Salsini G, Bonifazzi C, Perri P. The importance of glial cells in the homeostasis of the retinal microenvironment and their pivotal role in the course of diabetic retinopathy. Life Sci. 2016;162:54–9.
Article
CAS
PubMed
Google Scholar
Bringmann A, Iandiev I, Pannicke T, et al. Cellular signaling and factors involved in Müller cell gliosis: neuroprotective and detrimental effects. Prog Retin Eye Res. 2009;28(6):423–51.
Article
CAS
PubMed
Google Scholar
Vujosevic S, Micera A, Bini S, et al. Aqueous humor biomarkers of muller cell activation in diabetic eyes. Investig Ophthalmol Vis Sci. 2015;56:3913–8.
Article
CAS
Google Scholar
Van Hove I, De Groef L, Boeckx B, et al. Single-cell transcriptome analysis of the Akimba mouse retina reveals cell-type-specific insights into the pathobiology of diabetic retinopathy. Diabetologia. 2020;63(10):2235–48.
Article
PubMed
Google Scholar
Jang S, Lee JH, Choi KR, Kim D, Yoo HS, Oh S. Cytochemical alterations in the rat retina by LPS administration. Neurochem Res. 2007;32(1):1–10.
Article
CAS
PubMed
Google Scholar
Gerhardinger C, Costa MB, Coulombe MC, et al. Expression of acute-phase response proteins in retinal muller cells in diabetes. Investig Ophthalmol Vis Sci. 2005;46:349–57.
Article
Google Scholar
Lorenz L, Hirmer S, Schmalen A, et al. Cell surface profiling of retinal müller glial cells reveals association to immune pathways after LPS stimulation. Cells. 2021;10(3):711.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang M, Ma W, Zhao L, et al. Adaptive Müller cell responses to microglial activation mediate neuroprotection and coordinate inflammation in the retina. J Neuroinflammation. 2011;8:173.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gnana-Prakasam JP, Martin PM, et al. Hepcidin expression in mouse retina and its regulation via lipopolysaccharide/Toll-like receptor-4 pathway independent of Hfe. Biochem J. 2008;411(1):79–88.
Article
CAS
PubMed
Google Scholar
Liu XQ, Kobayashi H, Jin ZB, Wada A, Nao-I N. Differential expression of Kir4.1 and aquaporin 4 in the retina from endotoxin-induced uveitis rat. Mol Vis. 2007;13:309–17.
CAS
PubMed
PubMed Central
Google Scholar
Zhang HY, Wang Y, He Y, et al. A1 astrocytes contribute to murine depression-like behavior and cognitive dysfunction, which can be alleviated by IL-10 or fluorocitrate treatment. J Neuroinflammation. 2020;17(1):200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liddelow SA, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541(7638):481–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leung KW, Barnstable CJ, Tombran-Tink J. Bacterial endotoxin activates retinal pigment epithelial cells and induces their degeneration through IL-6 and IL-8 autocrine signaling. Mol Immunol. 2009;46(7):1374–86.
Article
CAS
PubMed
Google Scholar
Song J, Han D, Lee H, et al. A comprehensive proteomic and phosphoproteomic analysis of retinal pigment epithelium reveals multiple pathway alterations in response to the inflammatory stimuli. Int J Mol Sci. 2020;21(9):3037.
Article
CAS
PubMed Central
Google Scholar
Chaurasia SS, Lim RR, Parikh BH, et al. The NLRP3 inflammasome may contribute to pathologic neovascularization in the advanced stages of diabetic retinopathy. Sci Rep. 2018;8(1):2847.
Article
PubMed
PubMed Central
Google Scholar
Bermúdez V, Tenconi PE, Giusto NM, et al. Lipopolysaccharide-Induced Autophagy Mediates Retinal Pigment Epithelium Cells Survival. Modulation by the Phospholipase D Pathway. Front Cell Neurosci. 2019;13:154.
Article
PubMed
PubMed Central
Google Scholar
Young BM, Ildefonso CJ. Systematic injection of low-dose LPS transiently improves the retina function and structure of a mouse model of geographic atrophy. Adv Exp Med Biol. 2019;1185:57–62.
Article
CAS
PubMed
Google Scholar
Herdade AS, Silva IM, Calado Â, et al. Effects of diabetes on microcirculation and leukostasis in retinal and non-ocular tissues: implications for diabetic retinopathy. Biomolecules. 2020;10(11):1583.
Article
CAS
PubMed Central
Google Scholar
Chen W, Esselman WJ, Jump DB, Busik JV. Anti-inflammatory effect of docosahexaenoic acid on cytokine-induced adhesion molecule expression in human retinal vascular endothelial cells. Invest Ophthalmol Vis Sci. 2005;46(11):4342–7.
Article
PubMed
Google Scholar
Huang H, Jing G, Wang JJ, et al. ATF4 is a novel regulator of MCP-1 in microvascular endothelial cells. J Inflamm (Lond). 2015;12:31.
Article
Google Scholar
Fouda AY, Xu Z, Shosha E, et al. Arginase 1 promotes retinal neurovascular protection from ischemia through suppression of macrophage inflammatory responses. Cell Death Dis. 2018;9(10):1001.
Article
PubMed
PubMed Central
Google Scholar
Durham JT, Herman IM. Microvascular modifications in diabetic retinopathy. Curr Diab Rep. 2011;11(4):253–64.
Article
PubMed
Google Scholar
Miyamoto K, Khosrof S, Bursell SE, et al. Prevention of leukostasis and vascular leakage in streptozotocin-induced diabetic retinopathy via intercellular adhesion molecule-1 inhibition. Proc Natl Acad Sci U S A. 1999;96(19):10836–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Singh RP, Elman MJ, Singh SK, Fung AE, Stoilov I. Advances in the treatment of diabetic retinopathy. J Diabetes Complications. 2019;33(12):107417.
Article
PubMed
Google Scholar
Aiello LP, Edwards AR, Beck RW, et al. Factors associated with improvement and worsening of visual acuity 2 years after focal/grid photocoagulation for diabetic macular edema. Ophthalmology. 2010;117(5):946–53.
Article
PubMed
Google Scholar
Stitt AW, Curtis TM, Chen M, et al. The progress in understanding and treatment of diabetic retinopathy. Prog Retin Eye Res. 2016;51:156–86.
Article
PubMed
Google Scholar
Suez J, Zmora N, Segal E, Elinav E. The pros, cons, and many unknowns of probiotics. Nat Med. 2019;25(5):716–29.
Article
CAS
PubMed
Google Scholar
BordaloTonucci L, Dos Santos KM, De Luces Fortes Ferreira CL, Ribeiro SM, De Oliveira LL, Martino HS. Gut microbiota and probiotics: focus on diabetes mellitus. Crit Rev Food Sci Nutr. 2017;57(11):2296–309.
Article
Google Scholar
Razmpoosh E, Javadi A, Ejtahed HS, et al. The effect of probiotic supplementation on glycemic control and lipid profile in patients with type 2 diabetes: a randomized placebo controlled trial. Diabetes Metab Syndr. 2019;13(1):175–82.
Article
PubMed
Google Scholar
Sato J, Kanazawa A, Azuma K, Ikeda F, et al. Probiotic reduces bacterial translocation in type 2 diabetes mellitus: A randomised controlled study. Sci Rep. 2017;7(1):12115.
Article
PubMed
PubMed Central
Google Scholar
Bagarolli RA, Tobar N, Oliveira AG, Araújo TG, Carvalho BM, Rocha GZ, Vecina JF, Calisto K, Guadagnini D, Prada PO, SantosA SSTO, Saad MJ. Probiotics modulate gut microbiota and improve insulin sensitivity in DIO mice. J Nutr Biochem. 2017;50:16–25.
Article
CAS
PubMed
Google Scholar
Yamazaki T, Suzuki H, Yamada S, et al. Lactobacillus paracasei KW3110 suppresses inflammatory stress-induced premature cellular senescence of human retinal pigment epithelium cells and reduces ocular disorders in healthy humans. Int J Mol Sci. 2020;21(14):5091.
Article
CAS
PubMed Central
Google Scholar
Kumar P, Kizhakkedathu JN, Straus SK. Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules. 2018;8(1):4.
Article
PubMed Central
Google Scholar
Lehrer RI. Primate defensins. Nat Rev Microbiol. 2004;2(9):727–38.
Article
CAS
PubMed
Google Scholar
Pfalzgraff A, Brandenburg K, Weindl G. Antimicrobial peptides and their therapeutic potential for bacterial skin infections and wounds. Front Pharmacol. 2018;9:1–23.
Article
Google Scholar
Hou J, Liu HY, Diao H, Yu H. The truncated human beta-defensin 118 can modulate lipopolysaccharide mediated inflammatory response in RAW264.7 macrophages. Peptides. 2021;136:170438.
Article
CAS
PubMed
Google Scholar
Heinbockel L, Weindl G, Correa W, et al. Anti-Infective and Anti-Inflammatory Mode of Action of Peptide 19–2.5. Int J Mol Sci. 2021;22(3):1465.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martin L, Horst K, Chiazza F, et al. The synthetic antimicrobial peptide 19–2.5 attenuates septic cardiomyopathy and prevents down-regulation of SERCA2 in polymicrobial sepsis. Sci Rep. 2016;6:37277.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu M, Pan H, Leng W, et al. Distribution of microbes and drug susceptibility in patients with diabetic foot infections in Southwest China. J Diabetes Res. 2018;2018:9817308.
Article
PubMed
PubMed Central
Google Scholar
Xie J, Li Y, Dai J, et al. Olfactory ensheathing cells grafted into the retina of RCS Rats Suppress Inflammation by Down-Regulating the JAK/STAT Pathway. Front Cell Neurosci. 2019;13:341.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jha KA, Pentecost M, Lenin R, et al. TSG-6 in conditioned media from adipose mesenchymal stem cells protects against visual deficits in mild traumatic brain injury model through neurovascular modulation. Stem Cell Res Ther. 2019;10(1):318.
Article
PubMed
PubMed Central
Google Scholar
Xian P, Hei Y, Wang R, Wang T, Yang J, Li J, Di Z, Liu Z, Baskys A, Liu W, Wu S, Long Q. Mesenchymal stem cell-derived exosomes as a nanotherapeutic agent for amelioration of inflammation-induced astrocyte alterations in mice. Theranostics. 2019;9(20):5956–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wahid F, Shehzad A, Khan T, Kim YY. MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochim Biophys Acta. 2010;1803(11):1231–43.
Article
CAS
PubMed
Google Scholar
Platania CBM, Maisto R, Trotta MC, et al. Retinal and circulating miRNA expression patterns in diabetic retinopathy: An in silico and in vivo approach. Br J Pharmacol. 2019;176(13):2179–94.
CAS
PubMed
PubMed Central
Google Scholar
Morris DR, Bounds SE, Liu H, et al. Exosomal MiRNA transfer between retinal microglia and RPE. Int J Mol Sci. 2020;21(10):3541.
Article
CAS
PubMed Central
Google Scholar
Fernando N, Wong JHC, Das S, et al. MicroRNA-223 regulates retinal function and inflammation in the healthy and degenerating retina. Front Cell Dev Biol. 2020;8:516.
Article
PubMed
PubMed Central
Google Scholar
Dong N, Wang Y. MiR-30a Regulates S100A12-induced retinal microglial activation and inflammation by targeting NLRP3. Curr Eye Res. 2019;44(11):1236–43.
Article
CAS
PubMed
Google Scholar
Karali M, Guadagnino I, Marrocco E, et al. AAV-miR-204 protects from retinal degeneration by attenuation of microglia activation and photoreceptor cell death. Mol Ther Nucleic Acids. 2020;19:144–56.
Article
CAS
PubMed
Google Scholar
Wang Y, Chen S, Wang J, et al. MicroRNA-93/STAT3 signalling pathway mediates retinal microglial activation and protects retinal ganglion cells in an acute ocular hypertension model. Cell Death Dis. 2021;12(1):41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burgaletto C, Platania CBM, Di Benedetto G, et al. Targeting the miRNA-155/TNFSF10 network restrains inflammatory response in the retina in a mouse model of Alzheimer’s disease. Cell Death Dis. 2021;12(10):905.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yan L, Lee S, Lazzaro DR, Aranda J, Grant MB, Chaqour B. Single and compound knock-outs of MicroRNA (miRNA)-155 and its angiogenic gene target CCN1 in mice alter vascular and neovascular growth in the retina via resident microglia. J Biol Chem. 2015;290(38):23264–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schulte LN, Westermann AJ, Vogel J, et al. Differential activation and functional specialization of miR-146 and miR-155 in innate immune sensing. Nucleic Acids Res. 2013;41(1):542–53.
Article
CAS
PubMed
Google Scholar
Amadio M, Pascale A, Cupri S, et al. Nanosystems based on siRNA silencing HuR expression counteract diabetic retinopathy in rat. Pharmacol Res. 2016;111:713–20.
Article
CAS
PubMed
Google Scholar