Tahhan N, Du Toit R, Papas E, et al. Comparison of reverse-geometry lens designs for overnight orthokeratology. Optom Vis Sci. 2003;80(12):796–804.
Article
CAS
PubMed
Google Scholar
Lee YC, Wang JH, Chiu CJ. Effect of orthokeratology on myopia progression: twelve-year results of a retrospective cohort study. BMC Ophthalmol. 2017;17(1):243.
Article
PubMed
PubMed Central
Google Scholar
VanderVeen DK, Kraker RT, Pineles SL, et al. Use of orthokeratology for the prevention of myopic progression in children: a report by the American Academy of ophthalmology. Ophthalmology. 2019;126(4):623–36.
Article
PubMed
Google Scholar
Cho P, Cheung SW. Retardation of myopia in orthokeratology (ROMIO) study: a 2-year randomized clinical trial. Invest Ophthalmol Vis Sci. 2012;53(11):7077–85.
Article
PubMed
Google Scholar
Huang J, Wen D, Wang Q, et al. Efficacy comparison of 16 interventions for myopia control in children: a network Meta-analysis. Ophthalmology. 2016;123(4):697–708.
Article
PubMed
Google Scholar
Chen R, Chen Y, Lipson M, et al. The effect of treatment zone Decentration on myopic progression during or-thokeratology. Curr Eye Res. 2020;45(5):645–51.
Article
PubMed
Google Scholar
Wang A, Yang C. Influence of overnight orthokeratology Lens treatment zone Decentration on myopia progression. J Ophthalmol. 2019;2019:2596953.
PubMed
PubMed Central
Google Scholar
Lin W, Li N, Gu T, et al. The treatment zone size and its decentration influence axial elongation in children with orthokeratology treatment. BMC Ophthalmol. 2021;21(1):362.
Article
PubMed
PubMed Central
Google Scholar
Wang J, Yang D, Bi H, et al. A new method to analyze the relative corneal refractive power and its association to myopic progression control with orthokeratology. Transl Vis Sci Technol. 2018;7(6):17.
Article
PubMed
PubMed Central
Google Scholar
Wang D, Wen D, Zhang B, et al. The association between Fourier parameters and clinical parameters in myopic children undergoing orthokeratology. Curr Eye Res. 2021;46(11):1637–45.
Article
CAS
PubMed
Google Scholar
Hiraoka T, Mihashi T, Okamoto C, et al. Influence of induced decentered orthokeratology lens on ocular higher-order wavefront aberrations and contrast sensitivity function. J Cataract Refract Surg. 2009;35(11):1918–26.
Article
PubMed
Google Scholar
Hiraoka T, Kakita T, Okamoto F, et al. Influence of ocular wavefront aberrations on axial length elongation in myopic children treated with overnight orthokeratology. Ophthalmology. 2015;122(1):93–100.
Article
PubMed
Google Scholar
Yang X, Bi H, Li L, et al. The effect of relative corneal refractive power shift distribution on axial length growth in myopic children undergoing orthokeratology treatment. Curr Eye Res. 2021;46(5):657–65.
Article
CAS
PubMed
Google Scholar
Hu Y, Wen C, Li Z, et al. Areal summed corneal power shift is an important determinant for axial length elongation in myopic children treated with overnight orthokeratology. Br J Ophthalmol. 2019;103(11):1571–5.
Article
PubMed
Google Scholar
Zhong Y, Chen Z, Xue F, et al. Central and peripheral corneal power change in myopic orthokeratology and its relationship with 2-year axial length change. Invest Ophthalmol Vis Sci. 2015;56(8):4514–9.
Article
PubMed
Google Scholar
Paune J, Fonts S, Rodriguez L, et al. The role of Back optic zone diameter in myopia control with orthokeratology lenses. J Clin Med. 2021;10(2):336.
Article
PubMed
PubMed Central
Google Scholar
Carracedo G, Espinosa-Vidal TM, Martinez-Alberquilla I, et al. The topographical effect of optical zone diameter in orthokeratology contact lenses in high Myopes. J Ophthalmol. 2019;2019:1082472.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang Y, Li X, Ding C, et al. Comparison of peripheral refraction and higher-order aberrations between orthokeratology and multifocal soft contact lens designed with highly addition. Graefes Arch Clin Exp Ophthalmol. 2022.
Zhang Z, Chen Z, Chen Z, et al. Change in corneal power distribution in orthokeratology: a predictor for the change in axial length. Transl Vis Sci Technol. 2022;11(2):18.
Article
PubMed
PubMed Central
Google Scholar
Liu G, Chen Z, Xue F, et al. Effects of myopic orthokeratology on visual performance and optical quality. Eye Contact Lens. 2018;44(5):316–21.
Article
PubMed
Google Scholar
Maseedupally VK, Gifford P, Lum E, et al. Treatment zone Decentration during orthokeratology on eyes with corneal Toricity. Optom Vis Sci. 2016;93(9):1101–11.
Article
PubMed
Google Scholar
Yang X, Zhong X, Gong X, et al. Topographical evaluation of the decentration of orthokeratology lenses. Yan Ke Xue Bao. 2005;21(3):132–5.
PubMed
Google Scholar
Chen Z, Xue F, Zhou J, et al. Prediction of orthokeratology Lens Decentration with corneal elevation. Optom Vis Sci. 2017;94(9):903–7.
Article
PubMed
Google Scholar
Walline JJ, Jones LA, Sinnott LT. Corneal reshaping and myopia progression. Br J Ophthalmol. 2009;93(9):1181–5.
Article
CAS
PubMed
Google Scholar
Kang P, Swarbrick H. Time course of the effects of orthokeratology on peripheral refraction and corneal topography. Ophthalmic Physiol Opt. 2013;33(3):277–82.
Article
PubMed
Google Scholar
Queiros A, Amorim-de-Sousa A, Lopes-Ferreira D, et al. Relative peripheral refraction across 4 meridians after orthokeratology and LASIK surgery. Eye Vis (Lond). 2018;5:12.
Article
Google Scholar
Lau JK, Vincent SJ, Cheung SW, et al. Higher-order aberrations and axial elongation in myopic children treated with orthokeratology. Invest Ophthalmol Vis Sci. 2020;61(2):22.
Article
PubMed
PubMed Central
Google Scholar
Vincent SJ, Cho P, Chan KY, et al. CLEAR - orthokeratology. Cont Lens Anterior Eye. 2021;44(2):240–69.
Article
PubMed
Google Scholar
Lau JK, Vincent SJ, Cheung SW, et al. The influence of orthokeratology compression factor on ocular higher-order aberrations. Clin Exp Optom. 2020;103(1):123–8.
Article
PubMed
Google Scholar
Chen J, Huang W, Zhu R, et al. Influence of overnight orthokeratology lens fitting decentration on corneal topography reshaping. Eye Vis (Lond). 2018;5:5.
Article
Google Scholar
Tsai YY, Lin JM. Ablation centration after active eye-tracker-assisted photorefractive keratectomy and laser in situ keratomileusis. J Cataract Refract Surg. 2000;26(1):28–34.
Article
CAS
PubMed
Google Scholar
Lu F, Simpson T, Sorbara L, et al. The relationship between the treatment zone diameter and visual, optical and subjective performance in corneal refractive therapy lens wearers. Ophthalmic Physiol Opt. 2007;27(6):568–78.
Article
PubMed
Google Scholar
Wilson SE, Lin DT, Klyce SD, et al. Rigid contact lens decentration: a risk factor for corneal warpage. CLAO J. 1990;16(3):177–82.
CAS
PubMed
Google Scholar
Jiang F, Huang X, Xia H, et al. The spatial distribution of relative corneal refractive power shift and axial growth in myopic children: orthokeratology versus multifocal contact Lens. Front Neurosci. 2021;15:686932.
Article
PubMed
PubMed Central
Google Scholar
Wang D, Wen D, Zhang B, et al. The association between Fourier parameters and clinical parameters in myopic children undergoing Orthokeratolog. Cur Eye Res. 2021;(3):1–9.
Queiros A, Lopes-Ferreira D, Yeoh B, et al. Refractive, biometric and corneal topographic parameter changes during 12 months of orthokeratology. Clin Exp Optom. 2020;103(4):454–62.
Article
PubMed
Google Scholar
Li Z, Cui D, Long W, et al. Predictive role of paracentral corneal Toricity using elevation data for treatment zone Decentration during orthokeratology. Curr Eye Res. 2018;43(9):1083–9.
Article
PubMed
Google Scholar