Rao HL, Riyazuddin M, Dasari S, Puttaiah NK, Pradhan ZS, Weinreb RN, Mansouri K, Webers CAB. Diagnostic Abilities of the Optical Microangiography Parameters of the 3x3 mm and 6x6 mm Macular Scans in Glaucoma. J Glaucoma. 2018;27(6):496–503. https://doi.org/10.1097/IJG.0000000000000952.
Article
PubMed
Google Scholar
Jia Y, Tan O, Tokayer J, Potsaid B, Wang Y, Liu JJ, Kraus MF, Subhash H, Fujimoto JG, Hornegger J, Huang D. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express. 2012;20(4):4710–25. https://doi.org/10.1364/OE.20.004710.
Article
PubMed
PubMed Central
Google Scholar
Rao HL, Dasari S, Puttaiah NK, Pradhan ZS, Moghimi S, Mansouri K, Webers CAB, Weinreb RN. Optical Microangiography and Progressive Retinal Nerve Fiber Layer Loss in Primary Open Angle Glaucoma. Am J Ophthalmol. 2022;233:171–9. https://doi.org/10.1016/j.ajo.2021.07.023.
Article
PubMed
Google Scholar
Bansal T, Dubey S, Rao HL, Gandhi M, Pegu J. Predictors of Peripapillary and Macular Optical Microangiography Measurements in Healthy Eyes. J Glaucoma. 2021;30(8):697–702. https://doi.org/10.1097/IJG.0000000000001857.
Article
PubMed
Google Scholar
Di Antonio L, Viggiano P, Ferro G, Toto L, D’ Aloisio R, Porreca A, Di Nicola M, Mastropasqua R. Retinal vascular metrics difference by comparison of two image acquisition modes using a novel OCT angiography prototype. PLoS One. 2020;15(12):e0243074. https://doi.org/10.1371/journal.pone.0243074.
Article
CAS
PubMed
PubMed Central
Google Scholar
Borrelli E, Toto L, Viggiano P, Evangelista F, Palmieri M, Mastropasqua R. Widefield topographical analysis of the retinal perfusion and neuroretinal thickness in healthy eyes: a pilot study. Eye (Lond). 2020;34(12):2264–70. https://doi.org/10.1038/s41433-020-0804-5.
Article
Google Scholar
Zabel P, Kaluzny JJ, Zabel K, Kaluzna M, Lamkowski A, Jaworski D, Makowski J, Gebska-Toloczko M, Kucharski R. Quantitative assessment of retinal thickness and vessel density using optical coherence tomography angiography in patients with Alzheimer’s disease and glaucoma. PLoS One. 2021;16(3):e0248284. https://doi.org/10.1371/journal.pone.0248284.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takusagawa HL, Liu L, Ma KN, Jia Y, Gao SS, Zhang M, Edmunds B, Parikh M, Tehrani S, Morrison JC, Huang D. Projection-Resolved Optical Coherence Tomography Angiography of Macular Retinal Circulation in Glaucoma. Ophthalmology. 2017;124(11):1589–99. https://doi.org/10.1016/j.ophtha.2017.06.002.
Article
PubMed
Google Scholar
Liu L, Jia Y, Takusagawa HL, Pechauer AD, Edmunds B, Lombardi L, Davis E, Morrison JC, Huang D. Optical Coherence Tomography Angiography of the Peripapillary Retina in Glaucoma. JAMA Ophthalmol. 2015;133(9):1045–52. https://doi.org/10.1001/jamaophthalmol.2015.2225.
Article
PubMed
PubMed Central
Google Scholar
Yarmohammadi A, Zangwill LM, Manalastas PIC, Fuller NJ, Diniz-Filho A, Saunders LJ, Suh MH, Hasenstab K, Weinreb RN. Peripapillary and Macular Vessel Density in Patients with Primary Open-Angle Glaucoma and Unilateral Visual Field Loss. Ophthalmology. 2018;125(4):578–87. https://doi.org/10.1016/j.ophtha.2017.10.029.
Article
PubMed
Google Scholar
WuDunn D, Takusagawa HL, Sit AJ, Rosdahl JA, Radhakrishnan S, Hoguet A, Han Y, Chen TC. OCT Angiography for the Diagnosis of Glaucoma: A Report by the American Academy of Ophthalmology. Ophthalmology. 2021;128(8):1222–35. https://doi.org/10.1016/j.ophtha.2020.12.027.
Article
PubMed
Google Scholar
Wang X, Chen J, Kong X, Sun X. Quantification of Retinal Microvascular Density Using Optic Coherence Tomography Angiography in Primary Angle Closure Disease. Curr Eye Res. 2021;46(7):1018–24. https://doi.org/10.1080/02713683.2020.1849728.
Article
CAS
PubMed
Google Scholar
Subasi S, Yuksel N, Basaran E, Pirhan D. Comparison of vessel density in macular and peripapillary regions between primary open-angle glaucoma and pseudoexfoliation glaucoma using OCTA. Int Ophthalmol. 2021;41(1):173–84. https://doi.org/10.1007/s10792-020-01564-5.
Article
PubMed
Google Scholar
Posner A, Schlossman A. Further observations on the syndrome of glaucomatocyclitic crises. Trans Am Acad Ophthalmol Otolaryngol. 1953;57:531–6.
CAS
PubMed
Google Scholar
Posner A, Schlossman A. Syndrome of unilateral attacks of glaucoma with cyclic symptoms. Arch Opthalmol. 1948;39(4):517–35.
Article
CAS
Google Scholar
Tsai JC. Detection of the progression of retinal nerve fiber layer loss by optical coherence tomography in a patient with glaucomatocyclitic crisis. Taiwan J Ophthalmol. 2015;5(2):90–3. https://doi.org/10.1016/j.tjo.2014.12.001.
Article
PubMed
PubMed Central
Google Scholar
Robbins CB, Thompson AC, Bhullar PK, Koo HY, Agrawal R, Soundararajan S, Yoon SP, Polascik BW, Scott BL, Grewal DS, Fekrat S. Characterization of Retinal Microvascular and Choroidal Structural Changes in Parkinson Disease. JAMA Ophthalmol. 2021;139(2):182–8. https://doi.org/10.1001/jamaophthalmol.2020.5730.
Article
PubMed
Google Scholar
Guo H, Zhou H. The characteristic of intraocular pressure dynamic change in patients with glaucomatocyclitic crisis. Int Ophthalmol. 2018;39(8):1819–25. https://doi.org/10.1007/s10792-018-1015-y.
Article
PubMed
Google Scholar
Grunwald JE, Sinclair SH, Riva CE. Autoregulation of the retinal circulation in response to decrease of intraocular pressure below normal. Invest Ophthalmol Vis Sci. 1982;23(1):124–7.
CAS
PubMed
Google Scholar
Ma ZW, Qiu WH, Zhou DN, Yang WH, Pan XF, Chen H. Changes in vessel density of the patients with narrow antenior chamber after an acute intraocular pressure elevation observed by OCT angiography. BMC Ophthalmol. 2019;19(1):132. https://doi.org/10.1186/s12886-019-1146-6.
Article
PubMed
PubMed Central
Google Scholar
Jiang X, Johnson E, Cepurna W, Lozano D, Men S, Wang RK, Morrison J. The effect of age on the response of retinal capillary filling to changes in intraocular pressure measured by optical coherence tomography angiography. Microvasc Res. 2018;115:12–9. https://doi.org/10.1016/j.mvr.2017.08.001.
Article
PubMed
Google Scholar
Kim JA, Kim TW, Lee EJ, Girard MJA, Mari JM. Microvascular Changes in Peripapillary and Optic Nerve Head Tissues After Trabeculectomy in Primary Open-Angle Glaucoma. Invest Ophthalmol Vis Sci. 2018;59(11):4614–21. https://doi.org/10.1167/iovs.18-25038.
Article
CAS
PubMed
Google Scholar
Liu L, Takusagawa HL, Greenwald MF, Wang J, Alonzo B, Edmunds B, Morrison JC, Tan O, Jia Y, Huang D. Optical coherence tomographic angiography study of perfusion recovery after surgical lowering of intraocular pressure. Sci Rep. 2021;11(1):17251. https://doi.org/10.1038/s41598-021-96225-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hollo G. Influence of Large Intraocular Pressure Reduction on Peripapillary OCT Vessel Density in Ocular Hypertensive and Glaucoma Eyes. J Glaucoma. 2017;26(1):e7–10. https://doi.org/10.1097/IJG.0000000000000527.
Article
PubMed
Google Scholar
Liu C, Umapathi RM, Atalay E, Schmetterer L, Husain R, Boey PY, Aung T, Nongpiur ME. The Effect of Medical Lowering of Intraocular Pressure on Peripapillary and Macular Blood Flow as Measured by Optical Coherence Tomography Angiography in Treatment-naive Eyes. J Glaucoma. 2021;30(6):465–72. https://doi.org/10.1097/IJG.0000000000001828.
Article
PubMed
Google Scholar
You QS, Chan JCH, Ng ALK, Choy BKN, Shih KC, Cheung JJC, Wong JKW, Shum JWH, Ni MY, Lai JSM, Leung GM, Cheung CMG, Wong TY, Wong IYH. Macular Vessel Density Measured With Optical Coherence Tomography Angiography and Its Associations in a Large Population-Based Study. Invest Ophthalmol Vis Sci. 2019;60(14):4830–7. https://doi.org/10.1167/iovs.19-28137.
Article
PubMed
Google Scholar
Zhou LJ, Luo XZ, Shen PY, Li X, Su P, Zhu Z, Yan SG, Kong XB, Lu XH. Quantitative assessment and determinants of the papillary microvasculature in healthy subjects. BMC Ophthalmol. 2021;21(1):140. https://doi.org/10.1186/s12886-021-01896-5.
Article
PubMed
PubMed Central
Google Scholar
Richter GM, Lee JC, Khan N, Vorperian A, Hand B, Burkemper B, Zhou X, Chu Z, Wang R, Varma R, and Kashani AH.Ocular and systemic determinants of perifoveal and macular vessel parameters in healthy African Americans. Br J Ophthalmol.2021.https://doi.org/10.1136/bjophthalmol-2021-319675
Lim HB, Kim YW, Nam KY, Ryu CK, Jo YJ, Kim JY. Signal Strength as an Important Factor in the Analysis of Peripapillary Microvascular Density Using Optical Coherence Tomography Angiography. Sci Rep. 2019;9(1):16299. https://doi.org/10.1038/s41598-019-52818-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lever M, Glaser M, Chen Y, Halfwassen C, Unterlauft JD, Bechrakis NE, and Bohm MRR.Microvascular and Structural Alterations of the Macula in Early to Moderate Glaucoma: An Optical Coherence Tomography-Angiography Study. J Clin Med. 2021;10(21). https://doi.org/10.3390/jcm10215017
Meyer E, Haim T, Zonis S, Gidoni O, Gitay H, Levanon D, Nir I. Pseudoexfoliation: epidemiology, clinical and scanning electron microscopic study. Ophthalmologica. 1984;188(3):141–7. https://doi.org/10.1159/000309356.
Article
CAS
PubMed
Google Scholar
Lommatzsch C, Rothaus K, Koch JM, Heinz C, Grisanti S. OCTA vessel density changes in the macular zone in glaucomatous eyes. Graefes Arch Clin Exp Ophthalmol. 2018;256(8):1499–508. https://doi.org/10.1007/s00417-018-3965-1.
Article
CAS
PubMed
Google Scholar
Wu J, Sebastian RT, Chu CJ, McGregor F, Dick AD, Liu L. Reduced Macular Vessel Density and Capillary Perfusion in Glaucoma Detected Using OCT Angiography. Curr Eye Res. 2019;44(5):533–40. https://doi.org/10.1080/02713683.2018.1563195.
Article
CAS
PubMed
Google Scholar
Shoji T, Zangwill LM, Akagi T, Saunders LJ, Yarmohammadi A, Manalastas PIC, Penteado RC, Weinreb RN. Progressive Macula Vessel Density Loss in Primary Open-Angle Glaucoma: A Longitudinal Study. Am J Ophthalmol. 2017;182:107–17. https://doi.org/10.1016/j.ajo.2017.07.011.
Article
PubMed
PubMed Central
Google Scholar
Coscas F, Sellam A, Glacet-Bernard A, Jung C, Goudot M, Miere A, Souied EH. Normative Data for Vascular Density in Superficial and Deep Capillary Plexuses of Healthy Adults Assessed by Optical Coherence Tomography Angiography. Invest Ophthalmol Vis Sci. 2016;57(9):Oct211-223. https://doi.org/10.1167/iovs.15-18793.
Article
PubMed
Google Scholar
Park CK, Lee K, Kim EW, Kim S, Lee SY, Kim CY, Seong GJ, Bae HW. Effect of systemic blood pressure on optical coherence tomography angiography in glaucoma patients. Eye (Lond). 2021;35(7):1967–76. https://doi.org/10.1038/s41433-020-01199-x.
Article
Google Scholar
Lin Y, Ma D, Wang H, Chen S, Cai W, Zhang A, and Zhang M.Spatial positional relationship between macular superficial vessel density and ganglion cell-inner plexiform layer thickness in primary angle closure glaucoma. Int Ophthalmol. 2021.https://doi.org/10.1007/s10792-021-02005-7
Richter GM, Madi I, Chu Z, Burkemper B, Chang R, Zaman A, Sylvester B, Reznik A, Kashani A, Wang RK, Varma R. Structural and Functional Associations of Macular Microcirculation in the Ganglion Cell-Inner Plexiform Layer in Glaucoma Using Optical Coherence Tomography Angiography. J Glaucoma. 2018;27(3):281–90. https://doi.org/10.1097/IJG.0000000000000888.
Article
PubMed
PubMed Central
Google Scholar