Michael R, Bron A. The ageing lens and cataract: a model of normal and pathological ageing. Philos Trans R Soc Lond B Biol Sci. 2011;366:1278–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shiels A, Hejtmancik J. Genetics of human cataract. Clin Genet. 2013;84:120–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Courtney P. The National Cataract Surgery Survey: I. Method and descriptive features. Eye. 1992;6:487–92.
Article
PubMed
Google Scholar
Qureshi N, Ahmed T, Ahmed T. Opacities in optical media to cause diminished vision. Pak J Surg. 2014;30:63–6.
Google Scholar
Cui X, Wang L, Zhang J, Du R, Liao S, Li D, et al. HSF4 regulates DLAD expression and promotes lens de-nucleation. Biochim Biophys Acta. 1832;2013:1167–72.
Google Scholar
Fujimoto M, Izu H, Seki K, Fukuda K, Nishida T, Yamada S, et al. HSF4 is required for normal cell growth and differentiation during mouse lens development. EMBO J. 2004;23:4297–306.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakai A, Tanabe M, Kawazoe Y, Inazawa J, Morimoto RI, Nagata K. HSF4, a new member of the human heat shock factor family which lacks properties of a transcriptional activator. Mol Cell Biol. 1997;17:469–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cui X, Zhang J, Du R, Wang L, Archacki S, Zhang Y, et al. HSF4 is involved in DNA damage repair through regulation of Rad51. Biochim Biophys Acta. 1822;2012:1308–15.
Google Scholar
Shi Y, Shi X, Jin Y, Miao A, Bu L, He J, et al. Mutation screening of HSF4 in 150 age-related cataract patients. Mol Vis. 2008;14:1850–5.
CAS
PubMed
PubMed Central
Google Scholar
Bu L, Jin Y, Shi Y, Chu R, Ban A, Eiberg H, et al. Mutant DNA-binding domain of HSF4 is associated with autosomal dominant lamellar and Marner cataract. Nat Genet. 2002;31:276–8.
Article
CAS
PubMed
Google Scholar
Ke T, Wang QK, Ji B, Wang X, Liu P, Zhang X, et al. Novel HSF4 mutation causes congenital total white cataract in a Chinese family. Am J Ophthalmol. 2006;142:298–303.
Article
CAS
PubMed
Google Scholar
Smaoui N, Beltaief O, BenHamed S, M’Rad R, Maazoul F, Ouertani A, et al. A homozygous splice mutation in the HSF4 gene is associated with an autosomal recessive congenital cataract. Invest Ophthalmol Vis Sci. 2004;45:2716–21.
Article
PubMed
Google Scholar
Forshew T, Johnson CA, Khaliq S, Pasha S, Willis C, Abbasi R, et al. Locus heterogeneity in autosomal recessive congenital cataracts: linkage to 9q and germline HSF4 mutations. Hum Genet. 2005;117:452–9.
Article
CAS
PubMed
Google Scholar
Sajjad N, Goebel I, Kakar N, Cheema AM, Kubisch C, Ahmad J. A novel HSF4 gene mutation (p.R405X) causing autosomal recessive congenital cataracts in a large consanguineous family from Pakistan. BMC Med Genet. 2008;9:1471–2350.
Article
Google Scholar
Shi X, Cui B, Wang Z, Weng L, Xu Z, Ma J, et al. Removal of Hsf4 leads to cataract development in mice through down-regulation of γS-crystallin and Bfsp expression. BMC Mol Biol. 2009;10:10.
Article
PubMed
PubMed Central
Google Scholar
Lovén J, Orlando DA, Sigova AA, Lin CY, Rahl PB, Burge CB, et al. Revisiting global gene expression analysis. Cell. 2012;151:476–82.
Article
PubMed
PubMed Central
Google Scholar
Ueda M, Ota J, Yamashita Y, Choi YL, Ohki R, Wada T, et al. DNA microarray analysis of stage progression mechanism in myelodysplastic syndrome. Br J Haematol. 2003;123:288–96.
Article
CAS
PubMed
Google Scholar
He S, Pirity MK, Wang W-L, Wolf L, Chauhan BK, Cveklova K, et al. Chromatin remodeling enzyme Brg1 is required for mouse lens fiber cell terminal differentiation and its denucleation. Epigenetics Chromatin. 2010;3:21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res. 2013;41:D991–D5.
Article
CAS
PubMed
Google Scholar
Gautier L, Cope L, Bolstad BM, Irizarry RA. affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics. 2004;20:307–15.
Article
CAS
PubMed
Google Scholar
Smyth GK. Limma: linear models for microarray data. Bioinformatics and computational biology solutions using R and Bioconductor. New York: Springer; 2005. p. 397–420.
Book
Google Scholar
Benjamini Y. Discovering the false discovery rate. J Roy Stat Soc B. 2010;72:405–16.
Article
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc B. 1995;57:289–300.
Google Scholar
Wang L, Cao C, Ma Q, Zeng Q, Wang H, Cheng Z, et al. RNA-seq analyses of multiple meristems of soybean: novel and alternative transcripts, evolutionary and functional implications. BMC Plant Biol. 2014;14:169.
Article
PubMed
PubMed Central
Google Scholar
da Huang W, Sherman BT, Tan Q, Collins JR, Alvord WG, Roayaei J, et al. The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol. 2007;8:R183.
Article
PubMed
PubMed Central
Google Scholar
Von Mering C, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B. STRING: a database of predicted functional associations between proteins. Nucleic Acids Res. 2003;31:258–61.
Article
Google Scholar
Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, et al. STRING v9. 1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 2013;41:D808–D15.
Article
CAS
PubMed
Google Scholar
Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics. 2011;27:431–2.
Article
CAS
PubMed
Google Scholar
Bader GD, Hogue CW. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics. 2003;4:2.
Article
PubMed
PubMed Central
Google Scholar
Watkins R. Foundations of a solution to cataract blindness. Clin Exp Optom. 2002;85:59–60.
Article
PubMed
Google Scholar
Enoki Y, Mukoda Y, Furutani C, Sakurai H. DNA-binding and transcriptional activities of human HSF4 containing mutations that associate with congenital and age-related cataracts. Biochim Biophys Acta. 2010;1802:749–53.
Article
CAS
PubMed
Google Scholar
Lv H, Huang C, Zhang J, Liu Z, Zhang Z, Xu H, et al. A Novel HSF4 Gene Mutation Causes Autosomal-Dominant Cataracts in a Chinese Family. G3 (Bethesda). 2014;4:823–8.
Article
CAS
Google Scholar
Øsnes-Ringen O, Azqueta AO, Moe MC, Zetterström C, Røger M, Nicolaissen B, et al. DNA damage in lens epithelium of cataract patients in vivo and ex vivo. Acta Ophthalmol. 2013;91:652–6.
Article
PubMed
Google Scholar
Kleiman NJ, Spector A. DNA single strand breaks in human lens epithelial cells from patients with cataract. Curr Eye Res. 1993;12:423–31.
Article
CAS
PubMed
Google Scholar
Sorte K, Sune P, Bhake A, Shivkumar V, Gangane N, Basak A. Quantitative assessment of DNA damage directly in lens epithelial cells from senile cataract patients. Mol Vis. 2011;17:1.
CAS
PubMed
PubMed Central
Google Scholar
Zhang J, Wu J, Yang L, Zhu R, Yang M, Qin B, et al. DNA damage in lens epithelial cells and peripheral lymphocytes from age-related cataract patients. Ophthalmic Res. 2013;51:124–8.
Article
Google Scholar
Liegel RP, Handley MT, Ronchetti A, Brown S, Langemeyer L, Linford A, et al. Loss-of-function mutations in TBC1D20 cause cataracts and male infertility in blind sterile mice and Warburg micro syndrome in humans. Am J Hum Genet. 2013;93:1001–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Harper JW, Elledge SJ. The DNA damage response: ten years after. Mol Cell. 2007;28:739–45.
Article
CAS
PubMed
Google Scholar
Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461:1071–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ryu KY, Maehr R, Gilchrist CA, Long MA, Bouley DM, Mueller B, et al. The mouse polyubiquitin gene UbC is essential for fetal liver development, cell-cycle progression and stress tolerance. EMBO J. 2007;26:2693–706.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jahngen-Hodge J, Cyr D, Laxman E, Taylor A. Ubiquitin and ubiquitin conjugates in human lens. Exp Eye Res. 1992;55:897–902.
Article
CAS
PubMed
Google Scholar
Morishita H, Eguchi S, Kimura H, Sasaki J, Sakamaki Y, Robinson ML, et al. Deletion of autophagy-related 5 (Atg5) and Pik3c3 genes in the lens causes cataract independent of programmed organelle degradation. J Biol Chem. 2013;288:11436–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kimura Y, Tanaka K. Regulatory mechanisms involved in the control of ubiquitin homeostasis. J Biochem. 2010;147:793–8.
Article
CAS
PubMed
Google Scholar
Imai F, Yoshizawa A, Fujimori-Tonou N, Kawakami K, Masai I. The ubiquitin proteasome system is required for cell proliferation of the lens epithelium and for differentiation of lens fiber cells in zebrafish. Development. 2010;137:3257–68.
Article
CAS
PubMed
Google Scholar
Liou J-Y, Deng W-G, Gilroy DW, Shyue S-K, Wu KK. Colocalization and interaction of cyclooxygenase-2 with caveolin-1 in human fibroblasts. J Biol Chem. 2001;276:34975–82.
Article
CAS
PubMed
Google Scholar
Lo W-K, C-j Z, Reddan J. Identification of caveolae and their signature proteins caveolin 1 and 2 in the lens. Exp Eye Res. 2004;79:487–98.
Article
CAS
PubMed
Google Scholar
Zhu H, Yue J, Pan Z, Wu H, Cheng Y, Lu H, et al. Involvement of Caveolin-1 in repair of DNA damage through both homologous recombination and non-homologous end joining. PLoS One. 2010;5:e12055.
Article
PubMed
PubMed Central
Google Scholar
Rhim JH, Kim JH, Yeo E-J, Kim JC, Park SC. Caveolin-1 as a novel indicator of wound-healing capacity in aged human corneal epithelium. Mol Med. 2010;16:527.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ashby RS, Zeng G, Leotta AJ, Dennis YT, McFadden SA. Egr-1 mRNA Expression Is a Marker for the Direction of Mammalian Ocular Growth. Invest Ophthalmol Vis Sci. 2014;55:5911–21.
Article
CAS
PubMed
Google Scholar
Abate C, Luk D, Gagne E, Roeder RG, Curran T. Fos and jun cooperate in transcriptional regulation via heterologous activation domains. Mol Cell Biol. 1990;10:5532–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mahner S, Baasch C, Schwarz J, Hein S, Wolber L, Janicke F, et al. C-Fos expression is a molecular predictor of progression and survival in epithelial ovarian carcinoma. Br J Cancer. 2008;99:1269–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bossis G, Malnou CE, Farras R, Andermarcher E, Hipskind R, Rodriguez M, et al. Down-regulation of c-Fos/c-Jun AP-1 dimer activity by sumoylation. Mol Cell Biol. 2005;25:6964–79.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rinaudo JAS, Zelenka PS. Expression of c-fos and c-jun mRNA in the developing chicken lens: relationship to cell proliferation, quiescence, and differentiation. Exp Cell Res. 1992;199:147–53.
Article
CAS
PubMed
Google Scholar